Imbibition of water into a cellulose foam: The kinetics

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-07-09 DOI:10.1016/j.jmps.2024.105763
{"title":"Imbibition of water into a cellulose foam: The kinetics","authors":"","doi":"10.1016/j.jmps.2024.105763","DOIUrl":null,"url":null,"abstract":"<div><p>Cellulose foams are representative of many porous engineering solids that can absorb a large quantity of fluid such as water. Experiments are reported to give insight into water rise in cellulose foams and the underlying mechanisms. The water rise characteristic of water height <em>h</em> versus time <em>t</em> displays a distinct knee on a log-log plot; this knee separates an initial regime where <em>h</em> scales as <em>t</em><sup>1/2</sup> from a subsequent regime where <em>h</em> scales as <em>t</em><sup>1/4</sup>. The rate of water rise below the knee is consistent with the Washburn law of water rise in a single dominant capillary, and the knee in the <em>h</em>(<em>t</em>) curve suggests that the Jurin height of this large capillary has been attained. Water rise in the foam above the knee of the <em>h</em>(<em>t</em>) curve is interpreted as water rise in a population of small capillaries with a wide range of radius that feed off the dominant capillary. A series of critical experiments support this interpretation, including water rise in inclined columns, and water rise from a limited reservoir of water. A simple analytical model is used to provide a physical explanation for the observations. Additionally, X-ray computer tomography is used to deduce the probability density function of the small capillaries. The experimental findings are in support of the hypothesis that water rise in the cellulose foam is driven by capillary action and not by diffusion.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022509624002291/pdfft?md5=a06aae4dc21a0129dc3b3adf59301efc&pid=1-s2.0-S0022509624002291-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002291","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose foams are representative of many porous engineering solids that can absorb a large quantity of fluid such as water. Experiments are reported to give insight into water rise in cellulose foams and the underlying mechanisms. The water rise characteristic of water height h versus time t displays a distinct knee on a log-log plot; this knee separates an initial regime where h scales as t1/2 from a subsequent regime where h scales as t1/4. The rate of water rise below the knee is consistent with the Washburn law of water rise in a single dominant capillary, and the knee in the h(t) curve suggests that the Jurin height of this large capillary has been attained. Water rise in the foam above the knee of the h(t) curve is interpreted as water rise in a population of small capillaries with a wide range of radius that feed off the dominant capillary. A series of critical experiments support this interpretation, including water rise in inclined columns, and water rise from a limited reservoir of water. A simple analytical model is used to provide a physical explanation for the observations. Additionally, X-ray computer tomography is used to deduce the probability density function of the small capillaries. The experimental findings are in support of the hypothesis that water rise in the cellulose foam is driven by capillary action and not by diffusion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水浸入纤维素泡沫:动力学
纤维素泡沫是许多多孔工程固体的代表,可以吸收大量液体(如水)。报告通过实验揭示了纤维素泡沫中的水上升现象及其内在机理。水高度 h 随时间 t 变化的水上升特性在对数-对数图上显示出明显的膝点;该膝点将 h 随 t1/2 变化的初始状态与 h 随 t1/4 变化的后续状态区分开来。膝盖以下的水位上升速度符合单个主要毛细管中水位上升的沃什伯恩定律,而 h(t) 曲线上的膝盖表明,该大型毛细管的汝林高度已经达到。h(t) 曲线膝盖以上泡沫中的水上升被解释为从主要毛细管中汲取水的半径范围较大的小毛细管群中的水上升。一系列关键实验支持了这一解释,包括倾斜柱中的水上升和来自有限储水层的水上升。一个简单的分析模型为观测结果提供了物理解释。此外,还利用 X 射线计算机断层扫描来推断小毛细管的概率密度函数。实验结果支持这样的假设,即纤维素泡沫中水的上升是由毛细作用而非扩散驱动的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
The effect of stress barriers on unconventional-singularity-driven frictional rupture Analysis of shear localization in viscoplastic solids with pressure-sensitive structural transformations An analytic traction-displacement model for a reinforcing ligament bridging a crack at an arbitrary angle, including elastic, frictional, snubbing, yielding, creep, and fatigue phenomena A multiscale Bayesian method to quantify uncertainties in constitutive and microstructural parameters of 3D-printed composites Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1