A review of efficient electrocatalysts for the oxygen evolution reaction at large current density

Youtao Yao , Jiahui Lyu , Xingchuan Li , Cheng Chen , Francis Verpoort , John Wang , Zhenghui Pan , Zongkui Kou
{"title":"A review of efficient electrocatalysts for the oxygen evolution reaction at large current density","authors":"Youtao Yao ,&nbsp;Jiahui Lyu ,&nbsp;Xingchuan Li ,&nbsp;Cheng Chen ,&nbsp;Francis Verpoort ,&nbsp;John Wang ,&nbsp;Zhenghui Pan ,&nbsp;Zongkui Kou","doi":"10.1016/j.decarb.2024.100062","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of achieving global carbon neutrality, utilizing electrocatalytic water splitting to produce “green hydrogen” holds significant promise as an effective solution. The strategic development of economic, efficient, and robust anode oxygen evolution reaction (OER) catalysts is one of the imminent bottlenecks for scalable application of electrolyzing water into hydrogen and oxygen, particularly under actual yet harsh operating conditions such as large current density (LCD). In this review, we intend to summarize the advances and challenges in the understanding of the electrocatalytic OER at LCD. Initially, the impact of LCD on the electron transfer, mass transportation efficiency and catalyst stability is identified and summarized. Furthermore, five basic principles for catalyst design, namely the dimension of the materials, surface chemistry, creation of electron transfer pathways, synergy among nano-, micro-, and macroscale structures, and catalyst-support interaction, are systematically discussed. Specifically, the correlation between the synergistic function of the multiscale structures and the catalyst-support interaction is highlighted to direct improvements in catalyst efficiency and durability at the LCD. Finally, an outlook is prospected to further our understanding of these topics and provide related researchers with potential research areas.</p></div>","PeriodicalId":100356,"journal":{"name":"DeCarbon","volume":"5 ","pages":"Article 100062"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949881324000283/pdfft?md5=c51e75994627075ff353fec18b844865&pid=1-s2.0-S2949881324000283-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DeCarbon","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949881324000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within the framework of achieving global carbon neutrality, utilizing electrocatalytic water splitting to produce “green hydrogen” holds significant promise as an effective solution. The strategic development of economic, efficient, and robust anode oxygen evolution reaction (OER) catalysts is one of the imminent bottlenecks for scalable application of electrolyzing water into hydrogen and oxygen, particularly under actual yet harsh operating conditions such as large current density (LCD). In this review, we intend to summarize the advances and challenges in the understanding of the electrocatalytic OER at LCD. Initially, the impact of LCD on the electron transfer, mass transportation efficiency and catalyst stability is identified and summarized. Furthermore, five basic principles for catalyst design, namely the dimension of the materials, surface chemistry, creation of electron transfer pathways, synergy among nano-, micro-, and macroscale structures, and catalyst-support interaction, are systematically discussed. Specifically, the correlation between the synergistic function of the multiscale structures and the catalyst-support interaction is highlighted to direct improvements in catalyst efficiency and durability at the LCD. Finally, an outlook is prospected to further our understanding of these topics and provide related researchers with potential research areas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大电流密度下氧进化反应的高效电催化剂综述
在实现全球碳中和的框架下,利用电催化水分离技术生产 "绿色氢气 "是大有可为的有效解决方案。战略性地开发经济、高效、坚固的阳极氧进化反应(OER)催化剂,是将水电解为氢气和氧气的规模化应用中迫在眉睫的瓶颈之一,尤其是在大电流密度(LCD)等实际而苛刻的操作条件下。在本综述中,我们将总结在了解 LCD 下电催化 OER 方面的进展和挑战。首先,我们确定并总结了 LCD 对电子传输、质量传输效率和催化剂稳定性的影响。此外,还系统地讨论了催化剂设计的五项基本原则,即材料尺寸、表面化学、电子传递途径的创建、纳米、微米和宏观结构之间的协同作用以及催化剂与支持物之间的相互作用。特别强调了多尺度结构的协同功能与催化剂与支撑物相互作用之间的相关性,以直接提高液晶显示器上催化剂的效率和耐用性。最后,展望了我们对这些主题的进一步理解,并为相关研究人员提供了潜在的研究领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Challenges and perspectives toward wide-bandgap perovskite subcell in four-terminal all-perovskite tandem solar cells Eliminating active CO2 concentration in Carbon Capture and Storage (CCUS): Molten carbonate decarbonization through an insulation/diffusion membrane Exploring Ni-based alkaline OER catalysts: A comprehensive review of structures, performance, and in situ characterization methods Evaluating the economic and carbon emission reduction potential of fuel cell electric vehicle-to-grid Halogen sites regulation in lead-free AgSb-based perovskites for efficient photocatalytic CO2 reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1