{"title":"Effect of the electric field on the free volume investigated from positron annihilation lifetime and dielectric properties of sulfonated PVC/PMMA","authors":"M. R. M. Elsharkawy, Wael M. Mohammed","doi":"10.1002/pat.6519","DOIUrl":null,"url":null,"abstract":"Polymer electrolyte membranes (PEMs) play a vital role in electrochemical devices, facilitating ion conduction while blocking gases and electrons. Their effectiveness is closely linked to their microstructural properties, especially the free volume, which impacts ionic conductivity, mechanical strength, and overall device performance. This study examines the behavior of PVC/PMMA/SSA blends under electric fields, using Positron Annihilation Lifetime Spectroscopy (PALS) to assess free volume and dielectric properties. The study involved preparing and characterizing membranes through x‐ray diffraction (XRD), thermogravimetric analysis (TGA), and PALS. XRD results indicated semi‐crystalline structures with changes in intensity due to temperature variations, while TGA highlighted changes in thermal stability under different electric fields. PALS measurements showed that free volume varied with temperature and electric field strength, influencing the material's dielectric and mechanical characteristics. The results revealed that higher electric fields reduced free volume while enhancing dielectric properties. The dielectric constant and loss were found to depend on frequency, which was affected by the polar SO3H groups. Impedance spectroscopy provided further insights into the electrical properties, showing increased dc conductivity with stronger electric fields. A correlation between the free volume investigated from PAL and the electrical properties was observed. This study emphasizes the significance of free volume and external electric field in optimizing PEMs for advanced energy applications.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6519","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polymer electrolyte membranes (PEMs) play a vital role in electrochemical devices, facilitating ion conduction while blocking gases and electrons. Their effectiveness is closely linked to their microstructural properties, especially the free volume, which impacts ionic conductivity, mechanical strength, and overall device performance. This study examines the behavior of PVC/PMMA/SSA blends under electric fields, using Positron Annihilation Lifetime Spectroscopy (PALS) to assess free volume and dielectric properties. The study involved preparing and characterizing membranes through x‐ray diffraction (XRD), thermogravimetric analysis (TGA), and PALS. XRD results indicated semi‐crystalline structures with changes in intensity due to temperature variations, while TGA highlighted changes in thermal stability under different electric fields. PALS measurements showed that free volume varied with temperature and electric field strength, influencing the material's dielectric and mechanical characteristics. The results revealed that higher electric fields reduced free volume while enhancing dielectric properties. The dielectric constant and loss were found to depend on frequency, which was affected by the polar SO3H groups. Impedance spectroscopy provided further insights into the electrical properties, showing increased dc conductivity with stronger electric fields. A correlation between the free volume investigated from PAL and the electrical properties was observed. This study emphasizes the significance of free volume and external electric field in optimizing PEMs for advanced energy applications.
期刊介绍:
Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives.
Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century.
Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology.
Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.