Adnan Eghtesad , Jingye Tan , Jan Niklas Fuhg , Nikolaos Bouklas
{"title":"NN-EVP: A physics informed neural network-based elasto-viscoplastic framework for predictions of grain size-aware flow response","authors":"Adnan Eghtesad , Jingye Tan , Jan Niklas Fuhg , Nikolaos Bouklas","doi":"10.1016/j.ijplas.2024.104072","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a physics informed, neural network-based elasto-viscoplasticity (NN-EVP) constitutive modeling framework for predicting the flow response in metals as a function of underlying grain size. The developed NN-EVP algorithm is based on input convex neural networks as a means to strictly enforce thermodynamic consistency, while allowing high expressivity towards model discovery from limited data. It utilizes state-of-the-art machine learning tools within PyTorch’s high-performance library providing a flexible tool for data-driven, automated constitutive modeling. To test the performance of the framework, we generate synthetic stress–strain curves using a power law-based model with phenomenological hardening at small strains and test the trained model for strain amplitudes beyond the training data. Next, experimentally measured flow responses obtained from uniaxial deformations are used to train the framework under large plastic deformations. Additionally, the Hall–Petch relationship corresponding to grain size strengthening is discovered by training flow response as a function of grain size, also leading to efficient extrapolation. Furthermore, a deployment framework of the discovered neural network constitutive laws is demonstrated with finite element analysis procedures. The present work demonstrates a successful integration of neural networks into elasto-viscoplastic constitutive laws, providing a robust automated framework for constitutive model discovery that can efficiently generalize, while also providing insights into predictions of flow response and grain size-property relationships in metals and metallic alloys under large plastic deformations.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104072"},"PeriodicalIF":9.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924001992","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a physics informed, neural network-based elasto-viscoplasticity (NN-EVP) constitutive modeling framework for predicting the flow response in metals as a function of underlying grain size. The developed NN-EVP algorithm is based on input convex neural networks as a means to strictly enforce thermodynamic consistency, while allowing high expressivity towards model discovery from limited data. It utilizes state-of-the-art machine learning tools within PyTorch’s high-performance library providing a flexible tool for data-driven, automated constitutive modeling. To test the performance of the framework, we generate synthetic stress–strain curves using a power law-based model with phenomenological hardening at small strains and test the trained model for strain amplitudes beyond the training data. Next, experimentally measured flow responses obtained from uniaxial deformations are used to train the framework under large plastic deformations. Additionally, the Hall–Petch relationship corresponding to grain size strengthening is discovered by training flow response as a function of grain size, also leading to efficient extrapolation. Furthermore, a deployment framework of the discovered neural network constitutive laws is demonstrated with finite element analysis procedures. The present work demonstrates a successful integration of neural networks into elasto-viscoplastic constitutive laws, providing a robust automated framework for constitutive model discovery that can efficiently generalize, while also providing insights into predictions of flow response and grain size-property relationships in metals and metallic alloys under large plastic deformations.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.