{"title":"A Collaborative Control Protocol with Artificial Intelligence for Medical Student Work Scheduling","authors":"Puwadol Oak Dusadeerungsikul, S. Nof","doi":"10.15837/ijccc.2024.4.6686","DOIUrl":null,"url":null,"abstract":"Effective work scheduling for clinical training is essential for medical education, yet it remains challenging. Creating a clinical training schedule is a difficult task, due to the complexity of curriculum requirements, hospital demands, and student well-being. This study proposes the Collaborative Control Protocol with Artificial Intelligence for Medical Student Work Scheduling (CCP-AI-MWS) to optimize clinical training schedules. The CCP-AI-MWS integrates the Collaborative Requirement Planning principle with Artificial Intelligence (AI). Two experiments have been conducted comparing CCP-AI-MWS with current practice. Results show that the newly developed protocol outperforms the current method. CCP-AI-MWS achieves a more equitable distribution of assignments, better accommodates student preferences, and reduces unnecessary workload, thus mitigating student burnout and improving satisfaction. Moreover, the CCP-AI-MWS exhibits adaptability to unexpected situations and minimizes disruptions to the current schedule. The findings present the potential of CCP-AI-MWS to transform scheduling practices in medical education, offering an efficient solution that could benefit medical schools worldwide.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"2015 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2024.4.6686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Effective work scheduling for clinical training is essential for medical education, yet it remains challenging. Creating a clinical training schedule is a difficult task, due to the complexity of curriculum requirements, hospital demands, and student well-being. This study proposes the Collaborative Control Protocol with Artificial Intelligence for Medical Student Work Scheduling (CCP-AI-MWS) to optimize clinical training schedules. The CCP-AI-MWS integrates the Collaborative Requirement Planning principle with Artificial Intelligence (AI). Two experiments have been conducted comparing CCP-AI-MWS with current practice. Results show that the newly developed protocol outperforms the current method. CCP-AI-MWS achieves a more equitable distribution of assignments, better accommodates student preferences, and reduces unnecessary workload, thus mitigating student burnout and improving satisfaction. Moreover, the CCP-AI-MWS exhibits adaptability to unexpected situations and minimizes disruptions to the current schedule. The findings present the potential of CCP-AI-MWS to transform scheduling practices in medical education, offering an efficient solution that could benefit medical schools worldwide.
Juliana da Silva Garcia Nascimento, F. Pires, Daniela da Silva Garcia Regino, Kleiton Gonçalves do Nascimento, Tainá Vilhar Siqueira, Maria Célia Barcellos Dalri
Ana Beatriz Soares Da Silva, Alrivânia Moura Guimarães, Fernanda Letícia Da Costa Bezerra, Pedro Vinícius Souza Almeida, Luis Felipe Lopes Fernandes, Johny Carlos De Queiroz