{"title":"A novel cycloaliphatic epoxy monomer with inherent imide and phosphate groups enabled highly flame-retardant epoxy resin","authors":"","doi":"10.1016/j.reactfunctpolym.2024.106011","DOIUrl":null,"url":null,"abstract":"<div><p>Cycloaliphatic epoxy resin exhibits excellent comprehensive properties suitable for application in electrical/electronic materials. However, its combustibility issue is more difficult to be handled in nature than aromatic epoxy resins and has not yet well addressed currently. The synergistic effect of multiple structures is the efficient way to solve this problem. Therefore, a novel cycloaliphatic epoxide monomer containing both imide and phosphate groups was designed via imidization and epoxidation in this study. The epoxide monomer BEMP with high purity was obtained by discussing the epoxidation conditions. Using 4-methyltetrahydrophthalic anhydride (MHHPA) as a hardener, the cured epoxy resin BMEP/MHHPA demonstrated inherently outstanding flame retardancy with a high limited oxygen index (LOI) value of 36.5% and achieved UL-94 V-0 rating. Additionally, BMEP/MHHPA showed a significant reduction of 70.5% in heat release rate (HRR) and 57.7% in total heat release (THR) compared to commercial ERL-4221/MHHPA. The synergistic effect of imide and phosphate groups contributed to strong charring ability and intumescent flame-retardant action, resulting in effectively isolating heat and oxygen, and inhibiting the production of volatile flammable components. This approach provides an efficient method for developing highly fire-safe cycloaliphatic epoxides for use in electrical/electronic applications.</p></div>","PeriodicalId":20916,"journal":{"name":"Reactive & Functional Polymers","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive & Functional Polymers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138151482400186X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cycloaliphatic epoxy resin exhibits excellent comprehensive properties suitable for application in electrical/electronic materials. However, its combustibility issue is more difficult to be handled in nature than aromatic epoxy resins and has not yet well addressed currently. The synergistic effect of multiple structures is the efficient way to solve this problem. Therefore, a novel cycloaliphatic epoxide monomer containing both imide and phosphate groups was designed via imidization and epoxidation in this study. The epoxide monomer BEMP with high purity was obtained by discussing the epoxidation conditions. Using 4-methyltetrahydrophthalic anhydride (MHHPA) as a hardener, the cured epoxy resin BMEP/MHHPA demonstrated inherently outstanding flame retardancy with a high limited oxygen index (LOI) value of 36.5% and achieved UL-94 V-0 rating. Additionally, BMEP/MHHPA showed a significant reduction of 70.5% in heat release rate (HRR) and 57.7% in total heat release (THR) compared to commercial ERL-4221/MHHPA. The synergistic effect of imide and phosphate groups contributed to strong charring ability and intumescent flame-retardant action, resulting in effectively isolating heat and oxygen, and inhibiting the production of volatile flammable components. This approach provides an efficient method for developing highly fire-safe cycloaliphatic epoxides for use in electrical/electronic applications.
期刊介绍:
Reactive & Functional Polymers provides a forum to disseminate original ideas, concepts and developments in the science and technology of polymers with functional groups, which impart specific chemical reactivity or physical, chemical, structural, biological, and pharmacological functionality. The scope covers organic polymers, acting for instance as reagents, catalysts, templates, ion-exchangers, selective sorbents, chelating or antimicrobial agents, drug carriers, sensors, membranes, and hydrogels. This also includes reactive cross-linkable prepolymers and high-performance thermosetting polymers, natural or degradable polymers, conducting polymers, and porous polymers.
Original research articles must contain thorough molecular and material characterization data on synthesis of the above polymers in combination with their applications. Applications include but are not limited to catalysis, water or effluent treatment, separations and recovery, electronics and information storage, energy conversion, encapsulation, or adhesion.