Dynamic Cooling on Contemporary Quantum Computers

Lindsay Bassman Oftelie, Antonella De Pasquale, Michele Campisi
{"title":"Dynamic Cooling on Contemporary Quantum Computers","authors":"Lindsay Bassman Oftelie, Antonella De Pasquale, Michele Campisi","doi":"10.1103/prxquantum.5.030309","DOIUrl":null,"url":null,"abstract":"We study the problem of dynamic cooling whereby a target qubit is cooled at the expense of heating up <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi><mo>−</mo><mn>1</mn></math> further identical qubits by means of a global unitary operation. A standard back-of-the-envelope high-temperature estimate establishes that the target qubit temperature can be dynamically cooled by at most a factor of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><msqrt><mi>N</mi></msqrt></math>. Here we provide the exact expression for the minimum temperature to which the target qubit can be cooled and reveal that there is a crossover from the high initial temperature regime, where the scaling is <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><msqrt><mi>N</mi></msqrt></math>, to a low initial temperature regime, where a much faster scaling of <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><mi>N</mi></math> occurs. This slow, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><msqrt><mi>N</mi></msqrt></math> scaling, which was relevant for early high-temperature NMR quantum computers, is the reason dynamic cooling was dismissed as ineffectual around 20 years ago; the fact that current low-temperature quantum computers fall in the fast, <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>1</mn><mo>/</mo><mi>N</mi></math> scaling regime, reinstates the appeal of dynamic cooling today. We further show that the associated work cost of cooling is exponentially more advantageous in the low-temperature regime. We discuss the implementation of dynamic cooling in terms of quantum circuits and examine the effects of hardware noise. We successfully demonstrate dynamic cooling in a three-qubit system on a real quantum processor. Since the circuit size grows quickly with <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>N</mi></math>, scaling dynamic cooling to larger systems on noisy devices poses a challenge. We therefore propose a suboptimal cooling algorithm, whereby relinquishing a small amount of cooling capability results in a drastically reduced circuit complexity, greatly facilitating the implementation of dynamic cooling on near-future quantum computers.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the problem of dynamic cooling whereby a target qubit is cooled at the expense of heating up N1 further identical qubits by means of a global unitary operation. A standard back-of-the-envelope high-temperature estimate establishes that the target qubit temperature can be dynamically cooled by at most a factor of 1/N. Here we provide the exact expression for the minimum temperature to which the target qubit can be cooled and reveal that there is a crossover from the high initial temperature regime, where the scaling is 1/N, to a low initial temperature regime, where a much faster scaling of 1/N occurs. This slow, 1/N scaling, which was relevant for early high-temperature NMR quantum computers, is the reason dynamic cooling was dismissed as ineffectual around 20 years ago; the fact that current low-temperature quantum computers fall in the fast, 1/N scaling regime, reinstates the appeal of dynamic cooling today. We further show that the associated work cost of cooling is exponentially more advantageous in the low-temperature regime. We discuss the implementation of dynamic cooling in terms of quantum circuits and examine the effects of hardware noise. We successfully demonstrate dynamic cooling in a three-qubit system on a real quantum processor. Since the circuit size grows quickly with N, scaling dynamic cooling to larger systems on noisy devices poses a challenge. We therefore propose a suboptimal cooling algorithm, whereby relinquishing a small amount of cooling capability results in a drastically reduced circuit complexity, greatly facilitating the implementation of dynamic cooling on near-future quantum computers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
当代量子计算机的动态冷却
我们研究的是动态冷却问题,即通过全局单元操作,以加热 N-1 个相同的量子比特为代价来冷却目标量子比特。根据标准的高温回包估计,目标量子比特的温度最多可以动态冷却 1/N 倍。在这里,我们提供了目标量子比特可以冷却到的最低温度的精确表达式,并揭示了从初始温度为 1/N 的高温体系到初始温度为 1/N 的低温体系的交叉,在低温体系中,1/N 的缩放速度要快得多。这种缓慢的 1/N 缩放与早期的高温核磁共振量子计算机相关,也是大约 20 年前动态冷却被认为无效的原因;而目前的低温量子计算机属于快速的 1/N 缩放机制,这一事实使动态冷却在今天重新具有吸引力。我们进一步证明,在低温条件下,冷却的相关工作成本呈指数级增长,更具优势。我们从量子电路的角度讨论了动态冷却的实现,并研究了硬件噪声的影响。我们在实际量子处理器上成功演示了三量子比特系统的动态冷却。由于电路大小随 N 快速增长,因此在噪声设备上将动态冷却扩展到更大的系统是一个挑战。因此,我们提出了一种次优冷却算法,即放弃少量冷却能力,从而大幅降低电路复杂性,极大地促进了动态冷却在近未来量子计算机上的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Leakage of Single-Qubit Gates for Superconducting Quantum Processors Using Analytical Control Pulse Envelopes Quasiprobabilities in Quantum Thermodynamics and Many-Body Systems Improving Threshold for Fault-Tolerant Color-Code Quantum Computing by Flagged Weight Optimization Progress in Superconductor-Semiconductor Topological Josephson Junctions Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1