A transformer-based weakly supervised computational pathology method for clinical-grade diagnosis and molecular marker discovery of gliomas

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Nature Machine Intelligence Pub Date : 2024-07-18 DOI:10.1038/s42256-024-00868-w
Rui Jiang, Xiaoxu Yin, Pengshuai Yang, Lingchao Cheng, Juan Hu, Jiao Yang, Ying Wang, Xiaodan Fu, Li Shang, Liling Li, Wei Lin, Huan Zhou, Fufeng Chen, Xuegong Zhang, Zhongliang Hu, Hairong Lv
{"title":"A transformer-based weakly supervised computational pathology method for clinical-grade diagnosis and molecular marker discovery of gliomas","authors":"Rui Jiang, Xiaoxu Yin, Pengshuai Yang, Lingchao Cheng, Juan Hu, Jiao Yang, Ying Wang, Xiaodan Fu, Li Shang, Liling Li, Wei Lin, Huan Zhou, Fufeng Chen, Xuegong Zhang, Zhongliang Hu, Hairong Lv","doi":"10.1038/s42256-024-00868-w","DOIUrl":null,"url":null,"abstract":"The complex diagnostic criteria for gliomas pose great challenges for making accurate diagnoses with computational pathology methods. There are no in-depth analyses of the accuracy, reliability and auxiliary capability of present approaches from a clinical perspective. Previous studies have overlooked the exploration of molecular and morphological correlations. To overcome these limitations, we propose ROAM, a multiple-instance learning model based on large regions of interest and a pyramid transformer. ROAM enlarges regions of interest to facilitate the consideration of tissue contexts. It utilizes the pyramid transformer to model both intrascale and interscale correlations of morphological features and leverages class-specific multiple-instance learning based on attention to extract slide-level visual representations that can be used to diagnose gliomas. Through comprehensive experiments on both in-house and external glioma datasets, we demonstrate that ROAM can automatically capture key morphological features consistent with the experience of pathologists and thus provide accurate, reliable and adaptable clinical-grade diagnoses of gliomas. Moreover, ROAM has clinical value for auxiliary diagnoses and could pave the way for the study of molecular and morphological correlations. ROAM, based on large regions of interest and a pyramid transformer, can automatically capture key morphological features consistent with the experience of pathologists to provide accurate, reliable and adaptable clinical-grade diagnoses of gliomas while advancing the discovery of molecular and morphological markers related to glioma diagnosis.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 8","pages":"876-891"},"PeriodicalIF":18.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00868-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The complex diagnostic criteria for gliomas pose great challenges for making accurate diagnoses with computational pathology methods. There are no in-depth analyses of the accuracy, reliability and auxiliary capability of present approaches from a clinical perspective. Previous studies have overlooked the exploration of molecular and morphological correlations. To overcome these limitations, we propose ROAM, a multiple-instance learning model based on large regions of interest and a pyramid transformer. ROAM enlarges regions of interest to facilitate the consideration of tissue contexts. It utilizes the pyramid transformer to model both intrascale and interscale correlations of morphological features and leverages class-specific multiple-instance learning based on attention to extract slide-level visual representations that can be used to diagnose gliomas. Through comprehensive experiments on both in-house and external glioma datasets, we demonstrate that ROAM can automatically capture key morphological features consistent with the experience of pathologists and thus provide accurate, reliable and adaptable clinical-grade diagnoses of gliomas. Moreover, ROAM has clinical value for auxiliary diagnoses and could pave the way for the study of molecular and morphological correlations. ROAM, based on large regions of interest and a pyramid transformer, can automatically capture key morphological features consistent with the experience of pathologists to provide accurate, reliable and adaptable clinical-grade diagnoses of gliomas while advancing the discovery of molecular and morphological markers related to glioma diagnosis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于变换器的弱监督计算病理学方法,用于胶质瘤的临床分级诊断和分子标记物发现
神经胶质瘤的诊断标准十分复杂,这给利用计算病理学方法做出准确诊断带来了巨大挑战。目前还没有从临床角度对现有方法的准确性、可靠性和辅助能力进行深入分析。以往的研究忽略了对分子和形态学相关性的探讨。为了克服这些局限性,我们提出了基于大兴趣区域和金字塔转换器的多实例学习模型 ROAM。ROAM 扩大了感兴趣区域,便于考虑组织背景。它利用金字塔变换器对形态特征的级内和级间相关性进行建模,并利用基于注意力的特定类别多实例学习来提取可用于诊断胶质瘤的幻灯片级视觉表征。通过对内部和外部胶质瘤数据集的全面实验,我们证明 ROAM 可以自动捕捉与病理学家经验一致的关键形态特征,从而提供准确、可靠和适应性强的胶质瘤临床级诊断。此外,ROAM 还具有辅助诊断的临床价值,可为分子和形态学相关性研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
期刊最新文献
Machine learning for practical quantum error mitigation AI pioneers win 2024 Nobel prizes Reshaping the discovery of self-assembling peptides with generative AI guided by hybrid deep learning A soft skin with self-decoupled three-axis force-sensing taxels Efficient rare event sampling with unsupervised normalizing flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1