{"title":"Benchmarking AI-powered docking methods from the perspective of virtual screening","authors":"Shukai Gu, Chao Shen, Xujun Zhang, Huiyong Sun, Heng Cai, Hao Luo, Huifeng Zhao, Bo Liu, Hongyan Du, Yihao Zhao, Chenggong Fu, Silong Zhai, Yafeng Deng, Huanxiang Liu, Tingjun Hou, Yu Kang","doi":"10.1038/s42256-025-00993-0","DOIUrl":null,"url":null,"abstract":"<p>Recently, many artificial intelligence (AI)-powered protein–ligand docking and scoring methods have been developed, demonstrating impressive speed and accuracy. However, these methods often neglected the physical plausibility of the docked complexes and their efficacy in virtual screening (VS) projects. Therefore, we conducted a comprehensive benchmark analysis of four AI-powered and four physics-based docking tools and two AI-enhanced rescoring methods. We initially constructed the TrueDecoy set, a dataset on which the redocking experiments revealed that KarmaDock and CarsiDock surpassed all physics-based tools in docking accuracy, whereas all physics-based tools notably outperformed AI-based methods in structural rationality. The low physical plausibility of docked structures generated by the top AI method, CarsiDock, mainly stems from insufficient intermolecular validity. The VS results on the TrueDecoy set highlight the effectiveness of RTMScore as a rescore function, and Glide-based methods achieved the highest enrichment factors among all docking tools. Furthermore, we created the RandomDecoy set, a dataset that more closely resembles real-world VS scenarios, where AI-based tools obviously outperformed Glide. Additionally, we found that the employed ligand-based postprocessing methods had a weak or even negative impact on optimizing the conformations of docked complexes and enhancing VS performance. Finally, we proposed a hierarchical VS strategy that could efficiently and accurately enrich active molecules in large-scale VS projects.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"78 5 Pt 1 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-00993-0","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, many artificial intelligence (AI)-powered protein–ligand docking and scoring methods have been developed, demonstrating impressive speed and accuracy. However, these methods often neglected the physical plausibility of the docked complexes and their efficacy in virtual screening (VS) projects. Therefore, we conducted a comprehensive benchmark analysis of four AI-powered and four physics-based docking tools and two AI-enhanced rescoring methods. We initially constructed the TrueDecoy set, a dataset on which the redocking experiments revealed that KarmaDock and CarsiDock surpassed all physics-based tools in docking accuracy, whereas all physics-based tools notably outperformed AI-based methods in structural rationality. The low physical plausibility of docked structures generated by the top AI method, CarsiDock, mainly stems from insufficient intermolecular validity. The VS results on the TrueDecoy set highlight the effectiveness of RTMScore as a rescore function, and Glide-based methods achieved the highest enrichment factors among all docking tools. Furthermore, we created the RandomDecoy set, a dataset that more closely resembles real-world VS scenarios, where AI-based tools obviously outperformed Glide. Additionally, we found that the employed ligand-based postprocessing methods had a weak or even negative impact on optimizing the conformations of docked complexes and enhancing VS performance. Finally, we proposed a hierarchical VS strategy that could efficiently and accurately enrich active molecules in large-scale VS projects.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.