Sarah R. Weiskopf, Susannah B. Lerman, Forest Isbell, Toni Lyn Morelli
{"title":"Biodiversity promotes urban ecosystem functioning","authors":"Sarah R. Weiskopf, Susannah B. Lerman, Forest Isbell, Toni Lyn Morelli","doi":"10.1111/ecog.07366","DOIUrl":null,"url":null,"abstract":"<p>The proportion of people living in urban areas is growing globally. Understanding how to manage urban biodiversity, ecosystem functions, and ecosystem services is becoming more important. Biodiversity can increase ecosystem functioning in non-urban systems. However, few studies have reviewed the relationship between biodiversity and ecosystem functioning in urban areas, which differ in species compositions, abiotic environments, food webs, and turnover rates. We reviewed evidence of biodiversity–ecosystem functioning relationships in urban environments and assessed factors that influence the relationship direction. Based on 70 studies, relationships between biodiversity and ecosystem functioning were more positive than negative in urban areas, especially for pollination and nutrient cycling and retention. Surprisingly, positive and negative relationships between biodiversity and biomass production and storage were equally not statistically different, perhaps due to extensive plant management in urban areas. The number of studies and geographic coverage of our review was still insufficient to provide a general predictive framework for when biodiversity positively impacts ecosystem functioning. We identify gaps and opportunities to improve urban biodiversity–ecosystem functioning research and discuss how our findings can improve urban green space management.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 9","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07366","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07366","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The proportion of people living in urban areas is growing globally. Understanding how to manage urban biodiversity, ecosystem functions, and ecosystem services is becoming more important. Biodiversity can increase ecosystem functioning in non-urban systems. However, few studies have reviewed the relationship between biodiversity and ecosystem functioning in urban areas, which differ in species compositions, abiotic environments, food webs, and turnover rates. We reviewed evidence of biodiversity–ecosystem functioning relationships in urban environments and assessed factors that influence the relationship direction. Based on 70 studies, relationships between biodiversity and ecosystem functioning were more positive than negative in urban areas, especially for pollination and nutrient cycling and retention. Surprisingly, positive and negative relationships between biodiversity and biomass production and storage were equally not statistically different, perhaps due to extensive plant management in urban areas. The number of studies and geographic coverage of our review was still insufficient to provide a general predictive framework for when biodiversity positively impacts ecosystem functioning. We identify gaps and opportunities to improve urban biodiversity–ecosystem functioning research and discuss how our findings can improve urban green space management.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.