{"title":"Proton feeding from defect-rich carbon support to cobalt phthalocyanine for efficient CO2 electroreduction","authors":"","doi":"10.1016/S1872-2067(24)60061-6","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) holds significant promise for sustainable energy conversion, with cobalt phthalocyanine (CoPc) emerging as a notable catalyst due to its high CO selectivity. However, CoPc's efficacy is hindered by its limited ability to provide sufficient proton for the protonation process, particularly at industrial current densities. Herein, we introduce defect-engineered carbon nanotubes (d-CNT) to augment proton feeding for CO<sub>2</sub>RR over CoPc, achieved by expediting water dissociation. Our kinetic measurements and <em>in-situ</em> attenuated total reflection surface-enhanced infrared absorption spectroscopy reveal d-CNT significantly enhances proton feeding, thereby facilitating CO<sub>2</sub> activation to *COOH in CoPc. Density functional theory calculations corroborate these findings, illustrating that d-CNT decreases the barrier to water dissociation. Consequently, the CoPc/d-CNT mixture demonstrates robust performance, achieving 500 mA cm<sup>–2</sup> for CO<sub>2</sub>RR with CO selectivity exceeding 96%. Notably, CoPc/d-CNT remains stability for a duration of 20 h under a substantial current density of 150 mA cm<sup>–2</sup>. The study broadens the scope of practical applications for molecular catalysts in CO<sub>2</sub>RR, marking a significant step towards sustainable energy conversion.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600616","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) holds significant promise for sustainable energy conversion, with cobalt phthalocyanine (CoPc) emerging as a notable catalyst due to its high CO selectivity. However, CoPc's efficacy is hindered by its limited ability to provide sufficient proton for the protonation process, particularly at industrial current densities. Herein, we introduce defect-engineered carbon nanotubes (d-CNT) to augment proton feeding for CO2RR over CoPc, achieved by expediting water dissociation. Our kinetic measurements and in-situ attenuated total reflection surface-enhanced infrared absorption spectroscopy reveal d-CNT significantly enhances proton feeding, thereby facilitating CO2 activation to *COOH in CoPc. Density functional theory calculations corroborate these findings, illustrating that d-CNT decreases the barrier to water dissociation. Consequently, the CoPc/d-CNT mixture demonstrates robust performance, achieving 500 mA cm–2 for CO2RR with CO selectivity exceeding 96%. Notably, CoPc/d-CNT remains stability for a duration of 20 h under a substantial current density of 150 mA cm–2. The study broadens the scope of practical applications for molecular catalysts in CO2RR, marking a significant step towards sustainable energy conversion.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.