{"title":"Large-current polarization-engineered FeOOH@NiOOH electrocatalyst with stable Fe sites for large-current oxygen evolution reaction","authors":"","doi":"10.1016/S1872-2067(24)60062-8","DOIUrl":null,"url":null,"abstract":"<div><p>NiFe-based (oxy)hydroxides are among the most efficient electrocatalysts for the oxygen evolution reaction (OER). However, significant Fe leakage during the OER results in unsatisfactory stability. Herein, a large-current (1.5 A cm<sup>–2</sup>) galvanostatic reconstruction was used to fabricate FeOOH@NiOOH (<em>e</em>FNO<sub>L</sub>) with both fixed Fe sites and exposed high-index crystal facets (HIFs). Compared to FeNiOOH with low-index crystal facets, the phase-separated FeOOH@NiOOH showed a higher binding energy towards Fe, and the HIFs significantly improved the catalytic activity of FeOOH. The optimized <em>e</em>FNO<sub>L</sub> catalyst exhibits ultralow overpotentials of 234 and 272 mV, yielding substantial current densities of 100 and 500 mA cm<sup>–2</sup>, respectively, with a small Tafel slope of 35.2 mV dec<sup>–1</sup>. Moreover, due to the stabilized Fe sites, its striking stability over 100 h at 500 mA cm<sup>–2</sup> with 1.5% decay outperforms most NiFe-based OER catalysts reported recently. This study provides an effective strategy for developing highly active and stable catalysts <em>via</em> large-current electrochemical reconstruction.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600628","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
NiFe-based (oxy)hydroxides are among the most efficient electrocatalysts for the oxygen evolution reaction (OER). However, significant Fe leakage during the OER results in unsatisfactory stability. Herein, a large-current (1.5 A cm–2) galvanostatic reconstruction was used to fabricate FeOOH@NiOOH (eFNOL) with both fixed Fe sites and exposed high-index crystal facets (HIFs). Compared to FeNiOOH with low-index crystal facets, the phase-separated FeOOH@NiOOH showed a higher binding energy towards Fe, and the HIFs significantly improved the catalytic activity of FeOOH. The optimized eFNOL catalyst exhibits ultralow overpotentials of 234 and 272 mV, yielding substantial current densities of 100 and 500 mA cm–2, respectively, with a small Tafel slope of 35.2 mV dec–1. Moreover, due to the stabilized Fe sites, its striking stability over 100 h at 500 mA cm–2 with 1.5% decay outperforms most NiFe-based OER catalysts reported recently. This study provides an effective strategy for developing highly active and stable catalysts via large-current electrochemical reconstruction.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.