A new application of avocado oil to enrich the biological activities of polycaprolactone membranes for tissue engineering

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biopolymers Pub Date : 2024-07-19 DOI:10.1002/bip.23617
Merve Çapkın Yurtsever, Selin Aydoğan, Zeynep İyigündoğdu, Alican Cömertpay, Didem Demir, Seda Ceylan
{"title":"A new application of avocado oil to enrich the biological activities of polycaprolactone membranes for tissue engineering","authors":"Merve Çapkın Yurtsever,&nbsp;Selin Aydoğan,&nbsp;Zeynep İyigündoğdu,&nbsp;Alican Cömertpay,&nbsp;Didem Demir,&nbsp;Seda Ceylan","doi":"10.1002/bip.23617","DOIUrl":null,"url":null,"abstract":"<p>The metabolites synthesized by plants to protect themselves serves as natural antimicrobial agents used in biomaterials. In this study, avocado oil (AO), was incorporated as a plant source and natural antimicrobial agent into polycaprolactone (PCL) membranes. The effects of varying AO ratios (25, 50, and 100 wt%.—PCL@25AO, PCL@50AO, PCL@100AO) on PCL membrane morphology, chemical structure, wettability, antimicrobial activity, and cell viabilities were investigated. It was demonstrated that the AO acts as a pore-forming agent in solvent-casted membranes. Young's modulus of the membranes varied between 602.68 and 31.92 MPa and more flexible membranes were obtained with increasing AO content. Inhibition zones of AO were recorded between 7.86 and 13.97 mm against clinically relevant microbial strains including bacteria, yeast, and fungi. Antimicrobial activity of AO was retained in PCL membranes at all ratios. Resazurin assay indicated that PCL@25AO membranes were cytocompatible with mouse fibroblast cells (L929 cell line) on day 6 showing 72.4% cell viability with respect to neat PCL membranes. Viability results were supported by scanning electron microscopy images and DAPI staining. The overall results of this study highlight the potential of PCL@25AO membranes as a biomaterial with antimicrobial properties, cytocompatibility, and mechanical strength suitable for various biomedical applications.</p>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"115 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579220/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.23617","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The metabolites synthesized by plants to protect themselves serves as natural antimicrobial agents used in biomaterials. In this study, avocado oil (AO), was incorporated as a plant source and natural antimicrobial agent into polycaprolactone (PCL) membranes. The effects of varying AO ratios (25, 50, and 100 wt%.—PCL@25AO, PCL@50AO, PCL@100AO) on PCL membrane morphology, chemical structure, wettability, antimicrobial activity, and cell viabilities were investigated. It was demonstrated that the AO acts as a pore-forming agent in solvent-casted membranes. Young's modulus of the membranes varied between 602.68 and 31.92 MPa and more flexible membranes were obtained with increasing AO content. Inhibition zones of AO were recorded between 7.86 and 13.97 mm against clinically relevant microbial strains including bacteria, yeast, and fungi. Antimicrobial activity of AO was retained in PCL membranes at all ratios. Resazurin assay indicated that PCL@25AO membranes were cytocompatible with mouse fibroblast cells (L929 cell line) on day 6 showing 72.4% cell viability with respect to neat PCL membranes. Viability results were supported by scanning electron microscopy images and DAPI staining. The overall results of this study highlight the potential of PCL@25AO membranes as a biomaterial with antimicrobial properties, cytocompatibility, and mechanical strength suitable for various biomedical applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牛油果油在丰富组织工程聚己内酯膜生物活性方面的新应用。
植物为保护自身而合成的代谢物可作为天然抗菌剂用于生物材料中。本研究将鳄梨油(AO)作为植物源和天然抗菌剂加入聚己内酯(PCL)膜中。研究了不同的 AO 比例(25、50 和 100 wt%.-PCL@25AO、PCL@50AO、PCL@100AO)对 PCL 膜形态、化学结构、润湿性、抗菌活性和细胞活力的影响。结果表明,AO 在溶剂浇铸膜中起着孔隙形成剂的作用。膜的杨氏模量在 602.68 和 31.92 兆帕之间变化,随着 AO 含量的增加,膜的柔韧性增强。AO 对临床相关微生物菌株(包括细菌、酵母菌和真菌)的抑制区在 7.86 至 13.97 毫米之间。所有比率的 PCL 膜都保留了 AO 的抗菌活性。雷沙祖林检测表明,PCL@25AO 膜与小鼠成纤维细胞(L929 细胞系)具有细胞相容性,在第 6 天,与纯 PCL 膜相比,细胞存活率为 72.4%。扫描电子显微镜图像和 DAPI 染色证实了细胞存活率结果。本研究的总体结果凸显了 PCL@25AO 膜作为一种具有抗菌特性、细胞相容性和机械强度的生物材料的潜力,适合各种生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
期刊最新文献
Issue Information 3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect. 3D Printable Alginate-Chitosan Hydrogel Loaded With Ketoconazole Exhibits Anticryptococcal Activity. Fabrication of Bio-Based Composite Materials for Antimicrobial Cotton Fabric With Microbial Anti-Adhesive Activity. An Updated Review Summarizing the Anticancer Potential of Poly(Lactic-co-Glycolic Acid) (PLGA) Based Curcumin, Epigallocatechin Gallate, and Resveratrol Nanocarriers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1