Ajitha Gladis K P, Roja Ramani D, Mohana Suganthi N, Linu Babu P
{"title":"Gastrointestinal tract disease detection via deep learning based structural and statistical features optimized hexa-classification model.","authors":"Ajitha Gladis K P, Roja Ramani D, Mohana Suganthi N, Linu Babu P","doi":"10.3233/THC-240603","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gastrointestinal tract (GIT) diseases impact the entire digestive system, spanning from the mouth to the anus. Wireless Capsule Endoscopy (WCE) stands out as an effective analytic instrument for Gastrointestinal tract diseases. Nevertheless, accurately identifying various lesion features, such as irregular sizes, shapes, colors, and textures, remains challenging in this field.</p><p><strong>Objective: </strong>Several computer vision algorithms have been introduced to tackle these challenges, but many relied on handcrafted features, resulting in inaccuracies in various instances.</p><p><strong>Methods: </strong>In this work, a novel Deep SS-Hexa model is proposed which is a combination two different deep learning structures for extracting two different features from the WCE images to detect various GIT ailment. The gathered images are denoised by weighted median filter to remove the noisy distortions and augment the images for enhancing the training data. The structural and statistical (SS) feature extraction process is sectioned into two phases for the analysis of distinct regions of gastrointestinal. In the first stage, statistical features of the image are retrieved using MobileNet with the support of SiLU activation function to retrieve the relevant features. In the second phase, the segmented intestine images are transformed into structural features to learn the local information. These SS features are parallelly fused for selecting the best relevant features with walrus optimization algorithm. Finally, Deep belief network (DBN) is used classified the GIT diseases into hexa classes namely normal, ulcer, pylorus, cecum, esophagitis and polyps on the basis of the selected features.</p><p><strong>Results: </strong>The proposed Deep SS-Hexa model attains an overall average accuracy of 99.16% in GIT disease detection based on KVASIR and KID datasets. The proposed Deep SS-Hexa model achieves high level of accuracy with minimal computational cost in the recognition of GIT illness.</p><p><strong>Conclusions: </strong>The proposed Deep SS-Hexa Model progresses the overall accuracy range of 0.04%, 0.80% better than GastroVision, Genetic algorithm based on KVASIR dataset and 0.60%, 1.21% better than Modified U-Net, WCENet based on KID dataset respectively.</p>","PeriodicalId":48978,"journal":{"name":"Technology and Health Care","volume":" ","pages":"4453-4473"},"PeriodicalIF":1.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology and Health Care","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/THC-240603","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Gastrointestinal tract (GIT) diseases impact the entire digestive system, spanning from the mouth to the anus. Wireless Capsule Endoscopy (WCE) stands out as an effective analytic instrument for Gastrointestinal tract diseases. Nevertheless, accurately identifying various lesion features, such as irregular sizes, shapes, colors, and textures, remains challenging in this field.
Objective: Several computer vision algorithms have been introduced to tackle these challenges, but many relied on handcrafted features, resulting in inaccuracies in various instances.
Methods: In this work, a novel Deep SS-Hexa model is proposed which is a combination two different deep learning structures for extracting two different features from the WCE images to detect various GIT ailment. The gathered images are denoised by weighted median filter to remove the noisy distortions and augment the images for enhancing the training data. The structural and statistical (SS) feature extraction process is sectioned into two phases for the analysis of distinct regions of gastrointestinal. In the first stage, statistical features of the image are retrieved using MobileNet with the support of SiLU activation function to retrieve the relevant features. In the second phase, the segmented intestine images are transformed into structural features to learn the local information. These SS features are parallelly fused for selecting the best relevant features with walrus optimization algorithm. Finally, Deep belief network (DBN) is used classified the GIT diseases into hexa classes namely normal, ulcer, pylorus, cecum, esophagitis and polyps on the basis of the selected features.
Results: The proposed Deep SS-Hexa model attains an overall average accuracy of 99.16% in GIT disease detection based on KVASIR and KID datasets. The proposed Deep SS-Hexa model achieves high level of accuracy with minimal computational cost in the recognition of GIT illness.
Conclusions: The proposed Deep SS-Hexa Model progresses the overall accuracy range of 0.04%, 0.80% better than GastroVision, Genetic algorithm based on KVASIR dataset and 0.60%, 1.21% better than Modified U-Net, WCENet based on KID dataset respectively.
期刊介绍:
Technology and Health Care is intended to serve as a forum for the presentation of original articles and technical notes, observing rigorous scientific standards. Furthermore, upon invitation, reviews, tutorials, discussion papers and minisymposia are featured. The main focus of THC is related to the overlapping areas of engineering and medicine. The following types of contributions are considered:
1.Original articles: New concepts, procedures and devices associated with the use of technology in medical research and clinical practice are presented to a readership with a widespread background in engineering and/or medicine. In particular, the clinical benefit deriving from the application of engineering methods and devices in clinical medicine should be demonstrated. Typically, full length original contributions have a length of 4000 words, thereby taking duly into account figures and tables.
2.Technical Notes and Short Communications: Technical Notes relate to novel technical developments with relevance for clinical medicine. In Short Communications, clinical applications are shortly described. 3.Both Technical Notes and Short Communications typically have a length of 1500 words.
Reviews and Tutorials (upon invitation only): Tutorial and educational articles for persons with a primarily medical background on principles of engineering with particular significance for biomedical applications and vice versa are presented. The Editorial Board is responsible for the selection of topics.
4.Minisymposia (upon invitation only): Under the leadership of a Special Editor, controversial or important issues relating to health care are highlighted and discussed by various authors.
5.Letters to the Editors: Discussions or short statements (not indexed).