Commercial Carbon Fibers as Host for Sodium Deposition to Achieve High Volumetric Capacity

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-20 DOI:10.1002/adfm.202408880
Tianyi Ji, Xiaoxu Liu, Tian Wang, Yunli Shi, Dawei Sheng, Xiaodong Hao, Chaozheng He, Zexiang Shen
{"title":"Commercial Carbon Fibers as Host for Sodium Deposition to Achieve High Volumetric Capacity","authors":"Tianyi Ji, Xiaoxu Liu, Tian Wang, Yunli Shi, Dawei Sheng, Xiaodong Hao, Chaozheng He, Zexiang Shen","doi":"10.1002/adfm.202408880","DOIUrl":null,"url":null,"abstract":"The advancement of flexible electronic devices necessitates the utilization of electrode materials that offer robustness and high capacity. In this paper, it is revealed that commercially available carbon fibers with specific microcrystalline structures not only have high mechanical strength but also a high volumetric capacity of up to 300 mAh cm<jats:sup>−3</jats:sup>, surpassing conventional carbon materials. When multiple structural parameters of carbon fiber reach certain thresholds, a breakthrough in sodium storage capacity and rate performance can be achieved. This study further elucidates the mechanism whereby this specific carbon fiber primarily utilizes an all‐plateau sodium deposition mechanism, which occurs in pore‐like grain boundaries. Through in situ spectroscopy and synchrotron techniques, the reversible deposition process of metallic sodium has been revealed at different scales. Theoretical calculations and thermodynamic principles further confirm the desolvation and deposition mechanisms in carbon fibers. As a result, this research discovers the modulating effects and patterns of crystallinity, defect, and orientation of carbon materials on sodium storage sites and diffusion kinetics, thereby achieving controlled sodium storage. This work shows that commercial carbon fibers can serve as robust hosts for sodium deposition and enhances the theoretical understanding of how the microcrystalline structure of carbon materials relates to sodium storage properties.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202408880","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of flexible electronic devices necessitates the utilization of electrode materials that offer robustness and high capacity. In this paper, it is revealed that commercially available carbon fibers with specific microcrystalline structures not only have high mechanical strength but also a high volumetric capacity of up to 300 mAh cm−3, surpassing conventional carbon materials. When multiple structural parameters of carbon fiber reach certain thresholds, a breakthrough in sodium storage capacity and rate performance can be achieved. This study further elucidates the mechanism whereby this specific carbon fiber primarily utilizes an all‐plateau sodium deposition mechanism, which occurs in pore‐like grain boundaries. Through in situ spectroscopy and synchrotron techniques, the reversible deposition process of metallic sodium has been revealed at different scales. Theoretical calculations and thermodynamic principles further confirm the desolvation and deposition mechanisms in carbon fibers. As a result, this research discovers the modulating effects and patterns of crystallinity, defect, and orientation of carbon materials on sodium storage sites and diffusion kinetics, thereby achieving controlled sodium storage. This work shows that commercial carbon fibers can serve as robust hosts for sodium deposition and enhances the theoretical understanding of how the microcrystalline structure of carbon materials relates to sodium storage properties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
商用碳纤维作为钠沉积的宿主实现高容积容量
柔性电子设备的发展要求电极材料具有坚固性和高容量。本文揭示了具有特定微晶结构的市售碳纤维不仅具有很高的机械强度,而且还具有高达 300 mAh cm-3 的高容积容量,超过了传统的碳材料。当碳纤维的多个结构参数达到一定临界值时,就能实现钠存储容量和速率性能的突破。本研究进一步阐明了这种特定碳纤维主要利用全平台钠沉积机制的机理,该机制发生在孔隙状晶界中。通过原位光谱和同步辐射技术,揭示了金属钠在不同尺度上的可逆沉积过程。理论计算和热力学原理进一步证实了碳纤维中的脱溶和沉积机制。因此,这项研究发现了碳材料的结晶度、缺陷和取向对钠储存位点和扩散动力学的调节作用和模式,从而实现了可控钠储存。这项研究表明,商用碳纤维可作为钠沉积的稳健宿主,并加深了人们对碳材料微晶结构与钠存储特性之间关系的理论理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Progress and Perspective of High‐Entropy Strategy Applied in Layered Transition Metal Oxide Cathode Materials for High‐Energy and Long Cycle Life Sodium‐Ion Batteries Immuno-Isolation Strategy with Tacrolimus-Loaded Nanofilm Promotes Stable Stem Cell-Based Cartilage Regeneration Electrical Characterization of a Large-Area Single-Layer Cu3BHT 2D Conjugated Coordination Polymer Novel Graphene-Epoxy Composite with Aligned Architecture and Ultrahigh Thermal Conductivity Exploring the Intracellular Distribution of Se Compounds Delivered by Biodegradable Polyelectrolyte Capsules Using X-Ray Fluorescence Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1