Effect of Nutrient Solution Flow on Lettuce Root Morphology in Hydroponics: A Multi-Omics Analysis of Hormone Synthesis and Signal Transduction.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2024-07-01 DOI:10.1111/ppl.14435
Bateer Baiyin, Yue Xiang, Yang Shao, Jung Eek Son, Satoshi Yamada, Kotaro Tagawa, Qichang Yang
{"title":"Effect of Nutrient Solution Flow on Lettuce Root Morphology in Hydroponics: A Multi-Omics Analysis of Hormone Synthesis and Signal Transduction.","authors":"Bateer Baiyin, Yue Xiang, Yang Shao, Jung Eek Son, Satoshi Yamada, Kotaro Tagawa, Qichang Yang","doi":"10.1111/ppl.14435","DOIUrl":null,"url":null,"abstract":"<p><p>This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14435","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study examined how the nutrient flow environment affects lettuce root morphology in hydroponics using multi-omics analysis. The results indicate that increasing the nutrient flow rate initially increased indicators such as fresh root weight, root length, surface area, volume, and average diameter before declining, which mirrors the trend observed for shoot fresh weight. Furthermore, a high-flow environment significantly increased root tissue density. Further analysis using Weighted Gene Co-expression Network Analysis (WGCNA) and Weighted Protein Co-expression Network Analysis (WPCNA) identified modules that were highly correlated with phenotypes and hormones. The analysis revealed a significant enrichment of hormone signal transduction pathways. Differences in the expression of genes and proteins related to hormone synthesis and transduction pathways were observed among the different flow conditions. These findings suggest that nutrient flow may regulate hormone levels and signal transmission by modulating the genes and proteins associated with hormone biosynthesis and signaling pathways, thereby influencing root morphology. These findings should support the development of effective methods for regulating the flow of nutrients in hydroponic contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
营养液流动对水培莴苣根形态的影响:激素合成和信号转导的多指标分析
本研究利用多组学分析方法研究了营养液流动环境如何影响水培莴苣根系形态。结果表明,增加营养液流速最初会增加根鲜重、根长、表面积、体积和平均直径等指标,然后下降,这与观察到的芽鲜重趋势一致。此外,高流量环境显著增加了根组织密度。利用加权基因共表达网络分析(WGCNA)和加权蛋白质共表达网络分析(WPCNA)进行的进一步分析确定了与表型和激素高度相关的模块。分析表明,激素信号转导通路明显丰富。在不同的流动条件下,观察到与激素合成和转导途径相关的基因和蛋白质的表达存在差异。这些发现表明,营养流可能通过调节与激素生物合成和信号转导途径相关的基因和蛋白质来调节激素水平和信号转导,从而影响根的形态。这些发现将有助于开发在水培环境中调节养分流的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Meta-analysis of SnRK2 gene overexpression in response to drought and salt stress. Regulatory effect of pipecolic acid (Pip) on the antioxidant system activity of Mesembryanthemum crystallinum plants exposed to bacterial treatment. Tree species and drought: Two mysterious long-standing counterparts. R2R3-MYB repressor, BrMYB32, regulates anthocyanin biosynthesis in Chinese cabbage. The function of an apple ATP-dependent Phosphofructokinase gene MdPFK5 in regulating salt stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1