{"title":"Enhancing maritime transportation security: A data-driven Bayesian network analysis of terrorist attack risks.","authors":"Massoud Mohsendokht, Huanhuan Li, Christos Kontovas, Chia-Hsun Chang, Zhuohua Qu, Zaili Yang","doi":"10.1111/risa.15750","DOIUrl":null,"url":null,"abstract":"<p><p>Maritime terrorist accidents have a significant low-frequency-high-consequence feature and, thus, require new research to address the associated inherent uncertainty and the scarce literature in the field. This article aims to develop a novel method for maritime security risk analysis. It employs real accident data from maritime terrorist attacks over the past two decades to train a data-driven Bayesian network (DDBN) model. The findings help pinpoint key contributing factors, scrutinize their interdependencies, ascertain the probability of different terrorist scenarios, and describe their impact on different manifestations of maritime terrorism. The established DDBN model undergoes a thorough verification and validation process employing various techniques, such as sensitivity, metrics, and comparative analyses. Additionally, it is tested against recent real-world cases to demonstrate its effectiveness in both retrospective and prospective risk propagation, encompassing both diagnostic and predictive capabilities. These findings provide valuable insights for the various stakeholders, including companies and government bodies, fostering comprehension of maritime terrorism and potentially fortifying preventive measures and emergency management.</p>","PeriodicalId":21472,"journal":{"name":"Risk Analysis","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risk Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/risa.15750","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Maritime terrorist accidents have a significant low-frequency-high-consequence feature and, thus, require new research to address the associated inherent uncertainty and the scarce literature in the field. This article aims to develop a novel method for maritime security risk analysis. It employs real accident data from maritime terrorist attacks over the past two decades to train a data-driven Bayesian network (DDBN) model. The findings help pinpoint key contributing factors, scrutinize their interdependencies, ascertain the probability of different terrorist scenarios, and describe their impact on different manifestations of maritime terrorism. The established DDBN model undergoes a thorough verification and validation process employing various techniques, such as sensitivity, metrics, and comparative analyses. Additionally, it is tested against recent real-world cases to demonstrate its effectiveness in both retrospective and prospective risk propagation, encompassing both diagnostic and predictive capabilities. These findings provide valuable insights for the various stakeholders, including companies and government bodies, fostering comprehension of maritime terrorism and potentially fortifying preventive measures and emergency management.
期刊介绍:
Published on behalf of the Society for Risk Analysis, Risk Analysis is ranked among the top 10 journals in the ISI Journal Citation Reports under the social sciences, mathematical methods category, and provides a focal point for new developments in the field of risk analysis. This international peer-reviewed journal is committed to publishing critical empirical research and commentaries dealing with risk issues. The topics covered include:
• Human health and safety risks
• Microbial risks
• Engineering
• Mathematical modeling
• Risk characterization
• Risk communication
• Risk management and decision-making
• Risk perception, acceptability, and ethics
• Laws and regulatory policy
• Ecological risks.