Hanif Haidari, Richard Bright, Yunlong Yu, Krasimir Vasilev, Zlatko Kopecki
{"title":"Development of Microneedles for Antimicrobial Drug Delivery: A Comprehensive Review on Applications in Wound Infection Management","authors":"Hanif Haidari, Richard Bright, Yunlong Yu, Krasimir Vasilev, Zlatko Kopecki","doi":"10.1002/smsc.202400158","DOIUrl":null,"url":null,"abstract":"Microneedles (MNs) have emerged as a promising transdermal antimicrobial delivery system, providing precise and localized drug delivery while complemented with noninvasiveness and patient compliance. Currently, the topical application of antimicrobials restricts the delivery of drugs to the critical areas of the wound bed, largely due to barriers posed by the necrotic tissue, scab formation, and bacterial biofilms, which severely diminish the bioavailability of the therapeutics. MNs have enabled efficient and targeted delivery to overcome many chronic wound challenges. Over the past decade, significant progress has been made to develop MNs with unique properties tailored for the delivery of vaccines, anticancer, and antimicrobials. As ongoing research continues to refine MN design, material properties, and drug formulations, the potential for revolutionizing antimicrobial drug delivery for efficacy, patient experience, and therapeutic outcomes remains at the forefront of scientific research. In this review, insights are provided into the latest progress, current developments, and the diverse applications of MNs for antimicrobial drug delivery. Herein, the translational potential of MNs is highlighted and a perspective on the current challenges associated with clinical translation is provided. Furthermore, this review aids in identifying research gaps while empowering and contributing to the future implementation of cutting-edge delivery systems to effectively tackle antimicrobial resistance.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"334 1","pages":""},"PeriodicalIF":11.1000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microneedles (MNs) have emerged as a promising transdermal antimicrobial delivery system, providing precise and localized drug delivery while complemented with noninvasiveness and patient compliance. Currently, the topical application of antimicrobials restricts the delivery of drugs to the critical areas of the wound bed, largely due to barriers posed by the necrotic tissue, scab formation, and bacterial biofilms, which severely diminish the bioavailability of the therapeutics. MNs have enabled efficient and targeted delivery to overcome many chronic wound challenges. Over the past decade, significant progress has been made to develop MNs with unique properties tailored for the delivery of vaccines, anticancer, and antimicrobials. As ongoing research continues to refine MN design, material properties, and drug formulations, the potential for revolutionizing antimicrobial drug delivery for efficacy, patient experience, and therapeutic outcomes remains at the forefront of scientific research. In this review, insights are provided into the latest progress, current developments, and the diverse applications of MNs for antimicrobial drug delivery. Herein, the translational potential of MNs is highlighted and a perspective on the current challenges associated with clinical translation is provided. Furthermore, this review aids in identifying research gaps while empowering and contributing to the future implementation of cutting-edge delivery systems to effectively tackle antimicrobial resistance.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.