Yangyang Guo, Jing Sun, Cheng Wang, Yanni Yang and Junjie Wang
{"title":"Creation and Characterization of Nanoscale Ribbons on MoS2 by Atomic Force Microscope Nanolithography","authors":"Yangyang Guo, Jing Sun, Cheng Wang, Yanni Yang and Junjie Wang","doi":"10.1149/2162-8777/ad60ff","DOIUrl":null,"url":null,"abstract":"The atomic force microscope (AFM) has been widely used for fabricating the nanoscale oxide ribbons on various materials surface. Herein, we first conducted local anodic oxidation (LAO) lithography on two-dimensional nanomaterial (2D), i.e. multilayer MoS2, using AFM. The correlation of patterning behavior on the MoS2 flakes between the lithography conditions was investigated. The height and full width half maximum (FWHM) increase linearly with increasing tip voltage, even at different tip speeds, which is consistent with the results obtained from the Cabrera-Mott oxidation theory. The size of the clear relation decreases linearly with increasing tip speed, indicating that longer tip writing patterns result in more oxidation. The formation mechanism of the patterned oxide lines is presented along with LAO reaction processes.The final LAO lithography products have been demonstrated to be MoO2 and MoO3 by micro-Raman spectroscopy. These results show that LAO lithography using AFM is an effective technique for nanofabrication of nanodevices.","PeriodicalId":11496,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad60ff","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The atomic force microscope (AFM) has been widely used for fabricating the nanoscale oxide ribbons on various materials surface. Herein, we first conducted local anodic oxidation (LAO) lithography on two-dimensional nanomaterial (2D), i.e. multilayer MoS2, using AFM. The correlation of patterning behavior on the MoS2 flakes between the lithography conditions was investigated. The height and full width half maximum (FWHM) increase linearly with increasing tip voltage, even at different tip speeds, which is consistent with the results obtained from the Cabrera-Mott oxidation theory. The size of the clear relation decreases linearly with increasing tip speed, indicating that longer tip writing patterns result in more oxidation. The formation mechanism of the patterned oxide lines is presented along with LAO reaction processes.The final LAO lithography products have been demonstrated to be MoO2 and MoO3 by micro-Raman spectroscopy. These results show that LAO lithography using AFM is an effective technique for nanofabrication of nanodevices.
期刊介绍:
The ECS Journal of Solid State Science and Technology (JSS) was launched in 2012, and publishes outstanding research covering fundamental and applied areas of solid state science and technology, including experimental and theoretical aspects of the chemistry and physics of materials and devices.
JSS has five topical interest areas:
carbon nanostructures and devices
dielectric science and materials
electronic materials and processing
electronic and photonic devices and systems
luminescence and display materials, devices and processing.