{"title":"Symmetry-Enforced Many-Body Separability Transitions","authors":"Yu-Hsueh Chen, Tarun Grover","doi":"10.1103/prxquantum.5.030310","DOIUrl":null,"url":null,"abstract":"We study quantum many-body mixed states with a symmetry from the perspective of <i>separability</i>, i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-state phases and associated separability phase transitions, which also provides an alternative perspective on recently discussed “average symmetry-protected topological order.” We also study decohered <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi><mo>+</mo><mi>i</mi><mi>p</mi></math> superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity–preserving decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property, such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of such systems exhibits a temperature-tuned separability transition.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study quantum many-body mixed states with a symmetry from the perspective of separability, i.e., whether a mixed state can be expressed as an ensemble of short-range-entangled symmetric pure states. We provide evidence for “symmetry-enforced separability transitions” in a variety of states, where in one regime the mixed state is expressible as a convex sum of symmetric short-range-entangled pure states, while in the other regime, such a representation is not feasible. We first discuss the Gibbs state of Hamiltonians that exhibit spontaneous breaking of a discrete symmetry, and argue that the associated thermal phase transition can be thought of as a symmetry-enforced separability transition. Next we study cluster states in various dimensions subjected to local decoherence, and identify several distinct mixed-state phases and associated separability phase transitions, which also provides an alternative perspective on recently discussed “average symmetry-protected topological order.” We also study decohered superconductors, and find that if the decoherence breaks the fermion parity explicitly, then the resulting mixed state can be expressed as a convex sum of nonchiral states, while a fermion parity–preserving decoherence results in a phase transition at a nonzero threshold that corresponds to spontaneous breaking of fermion parity. Finally, we briefly discuss systems that satisfy the no low-energy trivial state property, such as the recently discovered good low-density parity-check codes, and argue that the Gibbs state of such systems exhibits a temperature-tuned separability transition.