Dual band beam steering antenna using branch line coupler network for higher band applications

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Frequenz Pub Date : 2024-07-18 DOI:10.1515/freq-2024-0078
Amit Abhishek, Priyadarshi Suraj
{"title":"Dual band beam steering antenna using branch line coupler network for higher band applications","authors":"Amit Abhishek, Priyadarshi Suraj","doi":"10.1515/freq-2024-0078","DOIUrl":null,"url":null,"abstract":"A beam-steering fed array antenna has been proposed for radar and mm-Wave applications operating from 22.6 to 26.89 GHz and 30–45 GHz with B.W % of 17.34 % and 40 % respectively having size of 12.11 × 25.58 × 0.8 mm<jats:sup>3</jats:sup> (0.96<jats:italic>λ</jats:italic>o × 2.01<jats:italic>λ</jats:italic>o × 0.06<jats:italic>λ</jats:italic>o). For radar, this antenna covers 24.15 GHz as police radar, 24.25–25.25 GHz &amp; 31.8–33.4 GHz as navigation radar, and 33.4–36 GHz as high-resolution radar for airport surveillance. This antenna also covers mm-wave bands for different countries (Brazil-40 GHz, China- 34–42.5 GHz, Mexico- 33 GHz and 37 GHz, and USA- 24 GHz, 37 &amp; 39 GHz). At initial stage, a monopole antenna with DGS has been designed with an operating band of 20.2–31.2 GHz and 36.6–42.2 GHz. Proposed antenna shifts the beam pattern at 90° with each other after exciting each port in alternative order with a scanning angle of ±45°, ±75° &amp; ±180°. Peak gain for 1st band ranges from 7.1 to 9 dBi and for the 2nd band ranges from 8.8 to 10.2 dBi and has a radiation efficiency of 88 %. Other diversity parameters such as ECC, DG, MEG, and isolation get analysed to observe the coupling effects. Design, development, and analysis of all antenna parameters is done by using HFSS 19 platform.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2024-0078","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A beam-steering fed array antenna has been proposed for radar and mm-Wave applications operating from 22.6 to 26.89 GHz and 30–45 GHz with B.W % of 17.34 % and 40 % respectively having size of 12.11 × 25.58 × 0.8 mm3 (0.96λo × 2.01λo × 0.06λo). For radar, this antenna covers 24.15 GHz as police radar, 24.25–25.25 GHz & 31.8–33.4 GHz as navigation radar, and 33.4–36 GHz as high-resolution radar for airport surveillance. This antenna also covers mm-wave bands for different countries (Brazil-40 GHz, China- 34–42.5 GHz, Mexico- 33 GHz and 37 GHz, and USA- 24 GHz, 37 & 39 GHz). At initial stage, a monopole antenna with DGS has been designed with an operating band of 20.2–31.2 GHz and 36.6–42.2 GHz. Proposed antenna shifts the beam pattern at 90° with each other after exciting each port in alternative order with a scanning angle of ±45°, ±75° & ±180°. Peak gain for 1st band ranges from 7.1 to 9 dBi and for the 2nd band ranges from 8.8 to 10.2 dBi and has a radiation efficiency of 88 %. Other diversity parameters such as ECC, DG, MEG, and isolation get analysed to observe the coupling effects. Design, development, and analysis of all antenna parameters is done by using HFSS 19 platform.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用支线耦合器网络的双波束转向天线,适用于更高频段应用
为雷达和毫米波应用提出了一种波束转向馈电阵列天线,工作频率为 22.6 至 26.89 GHz 和 30-45 GHz,B.W % 分别为 17.34 % 和 40 %,尺寸为 12.11 × 25.58 × 0.8 mm3(0.96λo × 2.01λo × 0.06λo)。在雷达方面,该天线可覆盖 24.15 GHz 的警用雷达、24.25-25.25 GHz &、31.8-33.4 GHz 的导航雷达和 33.4-36 GHz 的机场监视用高分辨率雷达。该天线还覆盖不同国家的毫米波频段(巴西-40 GHz、中国-34-42.5 GHz、墨西哥-33 GHz 和 37 GHz,以及美国-24 GHz、37 & 39 GHz)。在初始阶段,设计了一种带 DGS 的单极天线,工作频带为 20.2-31.2 GHz 和 36.6-42.2 GHz。在以 ±45°, ±75° & ±180° 的扫描角度依次对每个端口进行激励后,拟议的天线将波束图案相互移动 90°。第一波段的峰值增益为 7.1 至 9 dBi,第二波段的峰值增益为 8.8 至 10.2 dBi,辐射效率为 88%。还分析了其他分集参数,如 ECC、DG、MEG 和隔离,以观察耦合效应。所有天线参数的设计、开发和分析均通过 HFSS 19 平台完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frequenz
Frequenz 工程技术-工程:电子与电气
CiteScore
2.40
自引率
18.20%
发文量
81
审稿时长
3 months
期刊介绍: Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal. Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies. RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.
期刊最新文献
A wideband folded reflectarray antenna with a 3-D printed circularly polarized converter High-selectivity wideband bandpass filter based on quintuple-mode stub-loaded resonator and defected ground structures Wideband circularly polarized reconfigurable metasurface antenna for 5G applications Designing an ultra-wideband directional antipodal Vivaldi antenna with U-slots for biomedical applications using an optimized attention network An AMC-based low-RCS conformal phased array design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1