{"title":"Fabrication of Ag/ZnO/Bi2WO6 photocatalyst for boosting photocatalytic activities of cefuroxime sodium in wastewater","authors":"Rui Liu, Xin Zhang, Chong Tan","doi":"10.1007/s42823-024-00777-3","DOIUrl":null,"url":null,"abstract":"<p>Environmental-friendly photocatalytic technology is attracting considerable attentions in the filed of antibiotic degradation. In this work, an innovative Ag/ZnO/Bi<sub>2</sub>WO<sub>6</sub> catalyst was fabricated using sol–gel and ultrasonic methods for the degradation cefuroxime sodium in wastewater. The optimized Ag/ZnO/Bi<sub>2</sub>WO<sub>6</sub> photocatalyst demonstrated the a remarkable 77.0% photocatalytic efficiency within 180 min under simulated solar sunlight, with an apparent rate constant of 0.01085 min<sup>−1</sup>. This efficiency is notably 6.02 and 1.41 times higher than that of pure ZnO and Ag/ZnO, respectively. The Ag/ZnO/Bi<sub>2</sub>WO<sub>6</sub> photocatalyst achieved a degradation efficiency of up to 72.3% in tap water and polluted river water, while achieving 65.7% degradation in pulping wastewater and pharmaceutical wastewater. Experiments involving reactive species scavenging and electron paramagnetic resonance implied that hydroxide radicals were the predominant active species responsible for the degradation. The enhanced catalytic mechanism and degradation pathway were elucidated, providing valuable insights into the construction and development of high-performance catalysts based on zinc oxide.</p>","PeriodicalId":506,"journal":{"name":"Carbon Letters","volume":"25 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42823-024-00777-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Environmental-friendly photocatalytic technology is attracting considerable attentions in the filed of antibiotic degradation. In this work, an innovative Ag/ZnO/Bi2WO6 catalyst was fabricated using sol–gel and ultrasonic methods for the degradation cefuroxime sodium in wastewater. The optimized Ag/ZnO/Bi2WO6 photocatalyst demonstrated the a remarkable 77.0% photocatalytic efficiency within 180 min under simulated solar sunlight, with an apparent rate constant of 0.01085 min−1. This efficiency is notably 6.02 and 1.41 times higher than that of pure ZnO and Ag/ZnO, respectively. The Ag/ZnO/Bi2WO6 photocatalyst achieved a degradation efficiency of up to 72.3% in tap water and polluted river water, while achieving 65.7% degradation in pulping wastewater and pharmaceutical wastewater. Experiments involving reactive species scavenging and electron paramagnetic resonance implied that hydroxide radicals were the predominant active species responsible for the degradation. The enhanced catalytic mechanism and degradation pathway were elucidated, providing valuable insights into the construction and development of high-performance catalysts based on zinc oxide.
期刊介绍:
Carbon Letters aims to be a comprehensive journal with complete coverage of carbon materials and carbon-rich molecules. These materials range from, but are not limited to, diamond and graphite through chars, semicokes, mesophase substances, carbon fibers, carbon nanotubes, graphenes, carbon blacks, activated carbons, pyrolytic carbons, glass-like carbons, etc. Papers on the secondary production of new carbon and composite materials from the above mentioned various carbons are within the scope of the journal. Papers on organic substances, including coals, will be considered only if the research has close relation to the resulting carbon materials. Carbon Letters also seeks to keep abreast of new developments in their specialist fields and to unite in finding alternative energy solutions to current issues such as the greenhouse effect and the depletion of the ozone layer. The renewable energy basics, energy storage and conversion, solar energy, wind energy, water energy, nuclear energy, biomass energy, hydrogen production technology, and other clean energy technologies are also within the scope of the journal. Carbon Letters invites original reports of fundamental research in all branches of the theory and practice of carbon science and technology.