{"title":"Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-like factor 4 and Retinoid X receptor alpha in Cordyceps militaris","authors":"Hucheng Zhang, Lina Deng, Shuai Luo, Linying Liu, Guowei Yang, Yuning Zhang, Bo Gao, Dongqing Yang, Xiaojie Wang, Shuangshi Li, Xingjuan Li, Yaguang Jang, Wenyan Lao, Frank Vriesekoop","doi":"10.1615/intjmedmushrooms.2024054952","DOIUrl":null,"url":null,"abstract":"Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by qRT-PCR. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Krüppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.","PeriodicalId":14025,"journal":{"name":"International journal of medicinal mushrooms","volume":"57 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of medicinal mushrooms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1615/intjmedmushrooms.2024054952","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by qRT-PCR. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Krüppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.
期刊介绍:
The rapid growth of interest in medicinal mushrooms research is matched by the large number of disparate groups that currently publish in a wide range of publications. The International Journal of Medicinal Mushrooms is the one source of information that will draw together all aspects of this exciting and expanding field - a source that will keep you up to date with the latest issues and practice. The International Journal of Medicinal Mushrooms published original research articles and critical reviews on a broad range of subjects pertaining to medicinal mushrooms, including systematics, nomenclature, taxonomy, morphology, medicinal value, biotechnology, and much more.