{"title":"Isolation, identification, and biological characterization of bacterial endophytes isolated from Gunnera perpensa L.","authors":"Siphiwe Godfrey Mahlangu, Nodumo Zulu, Mahloro Hope Serepa-Dlamini, Siew Leng Tai","doi":"10.1093/femsle/fnae056","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, eleven endophytic bacterial strains, Herbaspirillum sp. (GP-SGM1, GP-SGM2, GP-SGM3, and GP-SGM11), Pseudomonas sp. (GP-SGM4, GP-SGM5), Novosphingobium sp. GP-SGM6, Chryseobacterium sp. GP-SGM7, Labedella sp. GP-SGM8, Brevibacterium sp. GP-SGM9, and Pseudomonas sp. GP-SGM10, were isolated from the rhizomes of Gunnera perpensa L. The growth kinetics, assessed through maximum growth rates (μmax) and optical density (OD) values, revealed that GP-SGM7 exhibited highest μmax values of 0.33 ± 0.01 hours (h)-1 with an OD of 4.20 ± 0.04. In contrast, GP-SGM11 exhibited the lowest μmax of 0.12 ± 0.05 h-1 and the smallest OD of 1.50 ± 0.00. In addition, the endophyte crude extracts were tested for antibacterial activity against five pathogenic strains using the disk diffusion method, with GP-SGM7 crude extracts exhibiting promising antibacterial activity against Klebsiella pneumoniae and Staphylococcus aureus. Antioxidant activity was determined by DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays. The crude extracts of GP-SGM1, GP-SGM7, GP-SGM9, and GP-SGM10 were the most effective at scavenging DPPH radicals, with GP-SGM7 also exhibiting a high FRAP value of 0.54 ± 0.01. These findings emphasize the therapeutic potential of endophytic bacteria from G. perpensa L. in addressing skin-related issues, including bacterial infections and free radicals.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321073/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae056","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the present study, eleven endophytic bacterial strains, Herbaspirillum sp. (GP-SGM1, GP-SGM2, GP-SGM3, and GP-SGM11), Pseudomonas sp. (GP-SGM4, GP-SGM5), Novosphingobium sp. GP-SGM6, Chryseobacterium sp. GP-SGM7, Labedella sp. GP-SGM8, Brevibacterium sp. GP-SGM9, and Pseudomonas sp. GP-SGM10, were isolated from the rhizomes of Gunnera perpensa L. The growth kinetics, assessed through maximum growth rates (μmax) and optical density (OD) values, revealed that GP-SGM7 exhibited highest μmax values of 0.33 ± 0.01 hours (h)-1 with an OD of 4.20 ± 0.04. In contrast, GP-SGM11 exhibited the lowest μmax of 0.12 ± 0.05 h-1 and the smallest OD of 1.50 ± 0.00. In addition, the endophyte crude extracts were tested for antibacterial activity against five pathogenic strains using the disk diffusion method, with GP-SGM7 crude extracts exhibiting promising antibacterial activity against Klebsiella pneumoniae and Staphylococcus aureus. Antioxidant activity was determined by DPPH (2, 2-diphenyl-1-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) assays. The crude extracts of GP-SGM1, GP-SGM7, GP-SGM9, and GP-SGM10 were the most effective at scavenging DPPH radicals, with GP-SGM7 also exhibiting a high FRAP value of 0.54 ± 0.01. These findings emphasize the therapeutic potential of endophytic bacteria from G. perpensa L. in addressing skin-related issues, including bacterial infections and free radicals.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.