{"title":"Estimating the synthetic accessibility of molecules with building block and reaction-aware SAScore","authors":"Shuan Chen, Yousung Jung","doi":"10.1186/s13321-024-00879-0","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the laboratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can determine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from synthesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification of a molecule's synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis planning program embedded with the same reaction knowledge and available building blocks.</p><p><b>Scientific contribution</b></p><p>We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction performance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future molecule synthesizability optimization.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00879-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the laboratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can determine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from synthesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification of a molecule's synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis planning program embedded with the same reaction knowledge and available building blocks.
Scientific contribution
We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction performance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future molecule synthesizability optimization.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.