Estimating the synthetic accessibility of molecules with building block and reaction-aware SAScore

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-07-23 DOI:10.1186/s13321-024-00879-0
Shuan Chen, Yousung Jung
{"title":"Estimating the synthetic accessibility of molecules with building block and reaction-aware SAScore","authors":"Shuan Chen,&nbsp;Yousung Jung","doi":"10.1186/s13321-024-00879-0","DOIUrl":null,"url":null,"abstract":"<div><p>Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the laboratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can determine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from synthesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification of a molecule's synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis planning program embedded with the same reaction knowledge and available building blocks.</p><p><b>Scientific contribution</b></p><p>We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction performance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future molecule synthesizability optimization.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00879-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synthetic accessibility prediction is a task to estimate how easily a given molecule might be synthesizable in the laboratory, playing a crucial role in computer-aided molecular design. Although synthesis planning programs can determine synthesis routes, their slow processing times make them impractical for large-scale molecule screening. On the other hand, existing rapid synthesis accessibility estimation methods offer speed but typically lack integration with actual synthesis routes and building block information. In this work, we introduce BR-SAScore, an enhanced version of SAScore that integrates the available building block information (B) and reaction knowledge (R) from synthesis planning programs into the scoring process. In particular, we differentiate fragments inherent in building blocks and fragments to be derived from synthesis (reactions) when scoring synthetic accessibility. Compared to existing methods, our experimental findings demonstrate that BR-SAScore offers more accurate and precise identification of a molecule's synthetic accessibility by the synthesis planning program with a fast calculation time. Moreover, we illustrate how BR-SAScore provides chemically interpretable results, aligning with the capability of the synthesis planning program embedded with the same reaction knowledge and available building blocks.

Scientific contribution

We introduce BR-SAScore, an extension of SAScore, to estimate the synthetic accessibility of molecules by leveraging known building-block and reactivity information. In our experiments, BR-SAScore shows superior prediction performance on predicting molecule synthetic accessibility compared to previous methods, including SAScore and deep-learning models, while requiring significantly less computation time. In addition, we show that BR-SAScore is able to precisely identify the chemical fragment contributing to the synthetic infeasibility, holding great potential for future molecule synthesizability optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用构件和反应感知 SAScore 估算分子的合成可达性。
合成可及性预测是一项估算特定分子在实验室中合成难易程度的任务,在计算机辅助分子设计中起着至关重要的作用。虽然合成规划程序可以确定合成路线,但其处理时间较慢,不适合大规模分子筛选。另一方面,现有的快速合成可及性估算方法虽然速度快,但通常缺乏与实际合成路线和构件信息的整合。在这项工作中,我们引入了 BR-SAScore,它是 SAScore 的增强版,将合成规划程序中可用的构件信息(B)和反应知识(R)整合到评分过程中。特别是,在对合成可及性进行评分时,我们区分了构件中固有的片段和合成中衍生的片段(反应)。与现有方法相比,我们的实验结果表明,BR-SAScore 能通过合成规划程序更准确、更精确地识别分子的合成可及性,而且计算时间短。此外,我们还说明了 BR-SAScore 如何提供化学上可解释的结果,与嵌入了相同反应知识和可用构件的合成规划程序的能力相一致。在我们的实验中,BR-SAScore在预测分子合成可及性方面的预测性能优于之前的方法,包括SAScore和深度学习模型,同时所需的计算时间也大大减少。此外,我们还表明,BR-SAScore 能够精确识别导致合成不可行的化学片段,为未来的分子可合成性优化提供了巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1