Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2024-07-24 DOI:10.1186/s41747-024-00486-6
Quirin Bellmann, Yang Peng, Ulrich Genske, Li Yan, Moritz Wagner, Paul Jahnke
{"title":"Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms.","authors":"Quirin Bellmann, Yang Peng, Ulrich Genske, Li Yan, Moritz Wagner, Paul Jahnke","doi":"10.1186/s41747-024-00486-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for lesion detection in neck CT.</p><p><strong>Methods: </strong>Nine patient-mimicking neck phantoms were examined with a 320-slice scanner at six doses: 0.5, 1, 1.6, 2.1, 3.1, and 5.2 mGy. Each of eight phantoms contained one circular lesion (diameter 1 cm; contrast -30 HU to the background) in the parapharyngeal space; one phantom had no lesions. Reconstruction was made using FBP, IR, and DLR. Thirteen readers were tasked with identifying and localizing lesions in 32 images with a lesion and 20 without lesions for each dose and reconstruction algorithm. Receiver operating characteristic (ROC) and localization ROC (LROC) analysis were performed.</p><p><strong>Results: </strong>DLR improved lesion detection with ROC area under the curve (AUC) 0.724 ± 0.023 (mean ± standard error of the mean) using DLR versus 0.696 ± 0.021 using IR (p = 0.037) and 0.671 ± 0.023 using FBP (p < 0.001). Likewise, DLR improved lesion localization, with LROC AUC 0.407 ± 0.039 versus 0.338 ± 0.041 using IR (p = 0.002) and 0.313 ± 0.044 using FBP (p < 0.001). Dose reduction to 0.5 mGy compromised lesion detection in FBP-reconstructed images compared to doses ≥ 2.1 mGy (p ≤ 0.024), while no effect was observed with DLR or IR (p ≥ 0.058).</p><p><strong>Conclusion: </strong>DLR improved the detectability of lesions in neck CT imaging. Dose reduction to 0.5 mGy maintained lesion detectability when denoising reconstruction was used.</p><p><strong>Relevance statement: </strong>Deep learning enhances lesion detection in neck CT imaging compared to iterative reconstruction and filtered back projection, offering improved diagnostic performance and potential for x-ray dose reduction.</p><p><strong>Key points: </strong>Low-contrast lesion detectability was assessed in anatomically realistic neck CT phantoms. Deep learning reconstruction (DLR) outperformed filtered back projection and iterative reconstruction. Dose has little impact on lesion detectability against anatomical background structures.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269546/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-024-00486-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Computed tomography (CT) reconstruction algorithms can improve image quality, especially deep learning reconstruction (DLR). We compared DLR, iterative reconstruction (IR), and filtered back projection (FBP) for lesion detection in neck CT.

Methods: Nine patient-mimicking neck phantoms were examined with a 320-slice scanner at six doses: 0.5, 1, 1.6, 2.1, 3.1, and 5.2 mGy. Each of eight phantoms contained one circular lesion (diameter 1 cm; contrast -30 HU to the background) in the parapharyngeal space; one phantom had no lesions. Reconstruction was made using FBP, IR, and DLR. Thirteen readers were tasked with identifying and localizing lesions in 32 images with a lesion and 20 without lesions for each dose and reconstruction algorithm. Receiver operating characteristic (ROC) and localization ROC (LROC) analysis were performed.

Results: DLR improved lesion detection with ROC area under the curve (AUC) 0.724 ± 0.023 (mean ± standard error of the mean) using DLR versus 0.696 ± 0.021 using IR (p = 0.037) and 0.671 ± 0.023 using FBP (p < 0.001). Likewise, DLR improved lesion localization, with LROC AUC 0.407 ± 0.039 versus 0.338 ± 0.041 using IR (p = 0.002) and 0.313 ± 0.044 using FBP (p < 0.001). Dose reduction to 0.5 mGy compromised lesion detection in FBP-reconstructed images compared to doses ≥ 2.1 mGy (p ≤ 0.024), while no effect was observed with DLR or IR (p ≥ 0.058).

Conclusion: DLR improved the detectability of lesions in neck CT imaging. Dose reduction to 0.5 mGy maintained lesion detectability when denoising reconstruction was used.

Relevance statement: Deep learning enhances lesion detection in neck CT imaging compared to iterative reconstruction and filtered back projection, offering improved diagnostic performance and potential for x-ray dose reduction.

Key points: Low-contrast lesion detectability was assessed in anatomically realistic neck CT phantoms. Deep learning reconstruction (DLR) outperformed filtered back projection and iterative reconstruction. Dose has little impact on lesion detectability against anatomical background structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
颈部 CT 中的低对比度病灶检测:一项使用逼真模型对深度学习、迭代和滤波背投影重建进行比较的多载机研究。
背景:计算机断层扫描(CT)重建算法可以提高图像质量,尤其是深度学习重建(DLR)。我们比较了 DLR、迭代重建(IR)和滤波背投影(FBP)在颈部 CT 病变检测中的应用:使用 320 排扫描仪在六种剂量下对九个患者模拟颈部模型进行了检查:0.5、1、1.6、2.1、3.1 和 5.2 mGy。八个模型中的每个模型都包含一个位于咽旁间隙的圆形病灶(直径 1 厘米;与背景的对比度为 -30 HU);一个模型没有病灶。使用 FBP、IR 和 DLR 进行重建。13 名阅读者的任务是在 32 幅有病变的图像和 20 幅无病变的图像中,根据每种剂量和重建算法识别病变并确定病变位置。进行了接收者操作特征(ROC)和定位ROC(LROC)分析:DLR提高了病灶检测率,其ROC曲线下面积(AUC)为0.724±0.023(平均值±平均值标准误差),而IR为0.696±0.021(p = 0.037),FBP为0.671±0.023(p 结论:DLR提高了病灶检测率,而IR为0.696±0.021(p = 0.037),FBP为0.671±0.023(p = 0.037):DLR 提高了颈部 CT 成像中病变的可探测性。当使用去噪重建时,剂量降低到 0.5 mGy 仍能保持病灶的可探测性:与迭代重建和滤波背投影相比,深度学习提高了颈部 CT 成像中的病灶检测能力,改善了诊断性能,并有可能降低 X 射线剂量:在解剖逼真的颈部 CT 模型中评估了低对比度病灶的可探测性。深度学习重建(DLR)的效果优于滤波背投影和迭代重建。相对于解剖背景结构,剂量对病变可探测性的影响很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
Dark-field radiography for the detection of bone microstructure changes in osteoporotic human lumbar spine specimens. Amide proton transfer-weighted CEST MRI for radiotherapy target delineation of glioblastoma: a prospective pilot study. Deep learning-based segmentation of kidneys and renal cysts on T2-weighted MRI from patients with autosomal dominant polycystic kidney disease. Probing clarity: AI-generated simplified breast imaging reports for enhanced patient comprehension powered by ChatGPT-4o. Transfer learning classification of suspicious lesions on breast ultrasound: is there room to avoid biopsies of benign lesions?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1