Can ChatGPT and Gemini justify brain CT referrals? A comparative study with human experts and a custom prediction model.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2025-02-18 DOI:10.1186/s41747-025-00569-y
Jaka Potočnik, Edel Thomas, Dearbhla Kearney, Ronan P Killeen, Eric J Heffernan, Shane J Foley
{"title":"Can ChatGPT and Gemini justify brain CT referrals? A comparative study with human experts and a custom prediction model.","authors":"Jaka Potočnik, Edel Thomas, Dearbhla Kearney, Ronan P Killeen, Eric J Heffernan, Shane J Foley","doi":"10.1186/s41747-025-00569-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The poor uptake of imaging referral guidelines in Europe results in a substantial amount of inappropriate computed tomography (CT) scans. Publicly available chatbots, ChatGPT and Gemini, offer an alternative for justifying real-world referrals. Recent research reports high ChatGPT accuracy when analysing American College of Radiology Appropriateness Criteria variants. We compared the chatbots' performance in interpreting, justifying, and suggesting alternative imaging for unstructured adult brain CT referrals in accordance with the European Society of Radiology iGuide. Our prediction model for automated iGuide categorisation of referrals was also compared against the chatbots.</p><p><strong>Methods: </strong>The iGuide justification of 143 real-world CT brain referrals, used to evaluate a prediction model, was analysed by two radiographers and radiologists. ChatGPT-4's and Gemini's imaging recommendations and pathology suspicions were compared with those of humans, with respect to referral completeness. Inter-rater reliability with κ statistics determined the agreement between entities.</p><p><strong>Results: </strong>Chatbots' performance was limited (κ = 0.3) but improved for more complete referrals. The prediction model outperformed the chatbots in justification analysis (κ = 0.853). The chatbots' interpretations of complete referrals were highly consistent (49/52, 94.2%). The agreement regarding alternative imaging was high for both complete and ambiguous referrals, with ChatGPT and Gemini correctly identifying imaging modality and anatomical region in 83/96 (86.5%) and 81/96 (84.4%) cases, respectively.</p><p><strong>Conclusion: </strong>The chatbots' ability to analyse the justification of adult brain CT referrals is limited to complete referrals, unlike our prediction model. Further research is needed to confirm these findings for other types of CT scans and modalities.</p><p><strong>Relevance statement: </strong>ChatGPT and Gemini exhibit potential in justifying free text brain CT referrals; however, further improvements are required to handle real-world referrals of varying quality.</p><p><strong>Key points: </strong>Custom prediction model's justification analysis strongly aligns with iGuide and surpasses chatbots. Chatbots incorrectly justified almost one-half of all CT brain referrals. Chatbots have limited performance in justifying ambiguous CT brain referrals. Chatbot performance improved when referrals were detailed and included suspected pathology.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"24"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00569-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The poor uptake of imaging referral guidelines in Europe results in a substantial amount of inappropriate computed tomography (CT) scans. Publicly available chatbots, ChatGPT and Gemini, offer an alternative for justifying real-world referrals. Recent research reports high ChatGPT accuracy when analysing American College of Radiology Appropriateness Criteria variants. We compared the chatbots' performance in interpreting, justifying, and suggesting alternative imaging for unstructured adult brain CT referrals in accordance with the European Society of Radiology iGuide. Our prediction model for automated iGuide categorisation of referrals was also compared against the chatbots.

Methods: The iGuide justification of 143 real-world CT brain referrals, used to evaluate a prediction model, was analysed by two radiographers and radiologists. ChatGPT-4's and Gemini's imaging recommendations and pathology suspicions were compared with those of humans, with respect to referral completeness. Inter-rater reliability with κ statistics determined the agreement between entities.

Results: Chatbots' performance was limited (κ = 0.3) but improved for more complete referrals. The prediction model outperformed the chatbots in justification analysis (κ = 0.853). The chatbots' interpretations of complete referrals were highly consistent (49/52, 94.2%). The agreement regarding alternative imaging was high for both complete and ambiguous referrals, with ChatGPT and Gemini correctly identifying imaging modality and anatomical region in 83/96 (86.5%) and 81/96 (84.4%) cases, respectively.

Conclusion: The chatbots' ability to analyse the justification of adult brain CT referrals is limited to complete referrals, unlike our prediction model. Further research is needed to confirm these findings for other types of CT scans and modalities.

Relevance statement: ChatGPT and Gemini exhibit potential in justifying free text brain CT referrals; however, further improvements are required to handle real-world referrals of varying quality.

Key points: Custom prediction model's justification analysis strongly aligns with iGuide and surpasses chatbots. Chatbots incorrectly justified almost one-half of all CT brain referrals. Chatbots have limited performance in justifying ambiguous CT brain referrals. Chatbot performance improved when referrals were detailed and included suspected pathology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
Mapping of prostate cancer microvascular patterns using super-resolution ultrasound imaging. Intraindividual crossover comparison of gadobenate dimeglumine-enhanced and gadoxetate disodium-enhanced MRI for characterizing focal liver lesions. Can ChatGPT and Gemini justify brain CT referrals? A comparative study with human experts and a custom prediction model. Cer-ConvN3Unet: an end-to-end multi-parametric MRI-based pipeline for automated detection and segmentation of cervical cancer. CT lymphangiography of the thoracic duct in mice: direct mesenteric versus popliteal lymph node puncture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1