Average treatment effects on binary outcomes with stochastic covariates.

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2024-07-24 DOI:10.1111/bmsp.12355
Christoph Kiefer, Marcella L Woud, Simon E Blackwell, Axel Mayer
{"title":"Average treatment effects on binary outcomes with stochastic covariates.","authors":"Christoph Kiefer, Marcella L Woud, Simon E Blackwell, Axel Mayer","doi":"10.1111/bmsp.12355","DOIUrl":null,"url":null,"abstract":"<p><p>When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12355","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

When evaluating the effect of psychological treatments on a dichotomous outcome variable in a randomized controlled trial (RCT), covariate adjustment using logistic regression models is often applied. In the presence of covariates, average marginal effects (AMEs) are often preferred over odds ratios, as AMEs yield a clearer substantive and causal interpretation. However, standard error computation of AMEs neglects sampling-based uncertainty (i.e., covariate values are assumed to be fixed over repeated sampling), which leads to underestimation of AME standard errors in other generalized linear models (e.g., Poisson regression). In this paper, we present and compare approaches allowing for stochastic (i.e., randomly sampled) covariates in models for binary outcomes. In a simulation study, we investigated the quality of the AME and stochastic-covariate approaches focusing on statistical inference in finite samples. Our results indicate that the fixed-covariate approach provides reliable results only if there is no heterogeneity in interindividual treatment effects (i.e., presence of treatment-covariate interactions), while the stochastic-covariate approaches are preferable in all other simulated conditions. We provide an illustrative example from clinical psychology investigating the effect of a cognitive bias modification training on post-traumatic stress disorder while accounting for patients' anxiety using an RCT.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机协变量对二元结果的平均治疗效果。
在随机对照试验(RCT)中评估心理治疗对二分法结果变量的影响时,通常会使用逻辑回归模型进行协变量调整。在存在协变量的情况下,平均边际效应(AMEs)往往比几率比较大,因为平均边际效应能产生更清晰的实质和因果解释。然而,平均边际效应的标准误差计算忽略了基于抽样的不确定性(即假设协变量值在重复抽样中是固定的),这导致在其他广义线性模型(如泊松回归)中平均边际效应标准误差被低估。在本文中,我们介绍并比较了二元结果模型中允许随机(即随机抽样)协变量的方法。在一项模拟研究中,我们以有限样本的统计推断为重点,调查了 AME 和随机协变量方法的质量。我们的结果表明,只有在个体间治疗效果不存在异质性(即存在治疗-变量交互作用)的情况下,固定-变量方法才能提供可靠的结果,而在所有其他模拟条件下,随机-变量方法更为可取。我们提供了一个临床心理学的示例,研究认知偏差修正训练对创伤后应激障碍的影响,同时使用 RCT 考虑患者的焦虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
A new Q-matrix validation method based on signal detection theory. Discriminability around polytomous knowledge structures and polytomous functions. Understanding linear interaction analysis with causal graphs. Identifiability analysis of the fixed-effects one-parameter logistic positive exponent model. Regularized Bayesian algorithms for Q-matrix inference based on saturated cognitive diagnosis modelling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1