Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2024-07-25 DOI:10.1016/j.matt.2024.06.045
{"title":"Open aerosol microfluidics enable orthogonal compartmentalized functionalization of hydrogel particles","authors":"","doi":"10.1016/j.matt.2024.06.045","DOIUrl":null,"url":null,"abstract":"<p>Compartmentalized hydrogel microparticles are promising for applications in chemical, biological, and biomedical fields, owing to their customizability. However, simultaneous tailoring of the functionalities in both internal and surface compartments remains challenging. Here, an open aerosol microfluidic (OAMF) approach is reported to fabricate compartmentalized hydrogel particles, achieving orthogonal (independent and non-interfering) control over both internal and surface functionalization. The OAMF method utilizes microfluidic networks for shaping internal compartment layouts and employs reactive aerosols for precise surface engineering. As a proof of concept, particles featuring intricate internal and surface designs were created. In addition, the broad material versatility of particle customization is demonstrated by different hydrogels. Finally, potential applications of particles were explored as novel cell carriers. As exemplars, patterned cell cultures can be established both on the surface and inside of the particles. The proposed approach enables flexible design of engineered particles, advancing tissue engineering, drug screening, and cell therapeutic applications.</p>","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.06.045","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Compartmentalized hydrogel microparticles are promising for applications in chemical, biological, and biomedical fields, owing to their customizability. However, simultaneous tailoring of the functionalities in both internal and surface compartments remains challenging. Here, an open aerosol microfluidic (OAMF) approach is reported to fabricate compartmentalized hydrogel particles, achieving orthogonal (independent and non-interfering) control over both internal and surface functionalization. The OAMF method utilizes microfluidic networks for shaping internal compartment layouts and employs reactive aerosols for precise surface engineering. As a proof of concept, particles featuring intricate internal and surface designs were created. In addition, the broad material versatility of particle customization is demonstrated by different hydrogels. Finally, potential applications of particles were explored as novel cell carriers. As exemplars, patterned cell cultures can be established both on the surface and inside of the particles. The proposed approach enables flexible design of engineered particles, advancing tissue engineering, drug screening, and cell therapeutic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开放式气溶胶微流体技术实现了水凝胶颗粒的正交分区功能化
分区水凝胶微粒因其可定制性而有望应用于化学、生物和生物医学领域。然而,同时定制内部和表面的功能仍然具有挑战性。本文报告了一种开放气溶胶微流控(OAMF)方法,用于制造分区水凝胶颗粒,实现对内部和表面功能化的正交(独立且互不干扰)控制。OAMF 方法利用微流体网络塑造内部隔室布局,并采用反应气溶胶进行精确的表面工程。作为概念验证,我们制造出了具有复杂内部和表面设计的颗粒。此外,还通过不同的水凝胶展示了颗粒定制的广泛材料通用性。最后,还探讨了颗粒作为新型细胞载体的潜在应用。例如,可以在颗粒表面和内部建立图案化细胞培养。所提出的方法可以灵活设计工程颗粒,推动组织工程、药物筛选和细胞治疗应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Post-synthesis tuning of dielectric constant via ferroelectric domain wall engineering Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity ChemOS 2.0: An orchestration architecture for chemical self-driving laboratories Integration of kinks and creases enables tunable folding in meta-ribbons Tuning water-cellulose interactions via copper-coordinated mercerization for hydro-actuated, shape-memory cellulosic hydroplastics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1