Wentao Li, Yupeng Liu, Weixiang Sun, Hanchao Wang, Wenqi Wang, Jie Meng, Xiaoqing Wu, Chuanpeng Hu, Daoai Wang and Ying Liu
{"title":"A high-output tubular triboelectric nanogenerator for wave energy collection and its application in self-powered anti-corrosion applications†","authors":"Wentao Li, Yupeng Liu, Weixiang Sun, Hanchao Wang, Wenqi Wang, Jie Meng, Xiaoqing Wu, Chuanpeng Hu, Daoai Wang and Ying Liu","doi":"10.1039/D4TA02760D","DOIUrl":null,"url":null,"abstract":"<p >Solid–liquid triboelectric nanogenerators (S–L TENGs) are extensively researched for their capability to harvest mechanical energy from natural sources. Nevertheless, some TENGs based on friction electrification and electrostatic induction are partially limited, and liquids exhibit slow separation speeds upon contact with solid interfaces, resulting in lower output currents and voltages. This limitation hinders their ability to satisfy real-world electricity demands. This study introduces a wave-driven closed polytetrafluoroethylene tube TENG (PT-TENG) and enhances the conventional tank car model by applying the principle of interface charge transfer. The improvements enable the output current and voltage to reach 900 μA and 150 V, respectively, with a power output of 17.74 mW. This represents a thirteen-fold increase over the traditional model's performance, effectively capturing the kinetic energy of water flow. The mechanism and influencing factors of the PT-TENG are analysed, including the effect of external conditions on the movement state of water flow within the device, to enhance PT-TENG's output. This novel S–L TENG efficiently gathers low-frequency energy, offering a straightforward manufacturing process and elevated output. It enhances charge transfer at the solid–liquid interface and offers a new strategy for harvesting ocean wave energy.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta02760d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid–liquid triboelectric nanogenerators (S–L TENGs) are extensively researched for their capability to harvest mechanical energy from natural sources. Nevertheless, some TENGs based on friction electrification and electrostatic induction are partially limited, and liquids exhibit slow separation speeds upon contact with solid interfaces, resulting in lower output currents and voltages. This limitation hinders their ability to satisfy real-world electricity demands. This study introduces a wave-driven closed polytetrafluoroethylene tube TENG (PT-TENG) and enhances the conventional tank car model by applying the principle of interface charge transfer. The improvements enable the output current and voltage to reach 900 μA and 150 V, respectively, with a power output of 17.74 mW. This represents a thirteen-fold increase over the traditional model's performance, effectively capturing the kinetic energy of water flow. The mechanism and influencing factors of the PT-TENG are analysed, including the effect of external conditions on the movement state of water flow within the device, to enhance PT-TENG's output. This novel S–L TENG efficiently gathers low-frequency energy, offering a straightforward manufacturing process and elevated output. It enhances charge transfer at the solid–liquid interface and offers a new strategy for harvesting ocean wave energy.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.