Ultrafine Nanoclusters Unlocked 3d-4f Electronic Ladders for Efficient Electrocatalytic Water Oxidation.

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-07-24 DOI:10.1021/acsnano.4c05130
Xuemin Wang, Na Li, Gui-Chang Wang, Ming Liu, Cui Zhang, Shuangxi Liu
{"title":"Ultrafine Nanoclusters Unlocked 3d-4f Electronic Ladders for Efficient Electrocatalytic Water Oxidation.","authors":"Xuemin Wang, Na Li, Gui-Chang Wang, Ming Liu, Cui Zhang, Shuangxi Liu","doi":"10.1021/acsnano.4c05130","DOIUrl":null,"url":null,"abstract":"<p><p>The vast extensional planes of two-dimensional (2D) nanomaterials are recognized as desirable ground for electrocatalytic reactions. However, they tend to exhibit catalytic inertia due to their surface-ordered coordination configurations. Herein, an in situ autoxidation strategy enables high-density grafting of ultrafine CeO<sub>2</sub> nanoclusters on 2D Co(OH)<sub>2</sub>. Affluent active units were activated at the inert interface of Co(OH)<sub>2</sub> via the formation of Co-O-Ce units. The optimized catalyst exhibits oxygen evolution reaction activity with an overpotential of 83 mV lower than that of Co(OH)<sub>2</sub> at 10 mA cm<sup>-2</sup>. The cascade orbital coupling between Co (3d) and Ce (4f) in Co-O-Ce units drives electron transfer by unlocking a \"d-f electron ladder\". Meanwhile, the bond-order theorem analyses and the d-band center show that the occupancy of Co-3d-<i>e</i><sub><i>g</i></sub> is optimized to balance the adsorption-desorption process of active sites to the key reaction intermediate *OOH, thereby making it easier to release oxygen. This work will drive the development of wider area electron modulation methods and provide guidance for the surface engineering of 2D nanomaterials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c05130","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The vast extensional planes of two-dimensional (2D) nanomaterials are recognized as desirable ground for electrocatalytic reactions. However, they tend to exhibit catalytic inertia due to their surface-ordered coordination configurations. Herein, an in situ autoxidation strategy enables high-density grafting of ultrafine CeO2 nanoclusters on 2D Co(OH)2. Affluent active units were activated at the inert interface of Co(OH)2 via the formation of Co-O-Ce units. The optimized catalyst exhibits oxygen evolution reaction activity with an overpotential of 83 mV lower than that of Co(OH)2 at 10 mA cm-2. The cascade orbital coupling between Co (3d) and Ce (4f) in Co-O-Ce units drives electron transfer by unlocking a "d-f electron ladder". Meanwhile, the bond-order theorem analyses and the d-band center show that the occupancy of Co-3d-eg is optimized to balance the adsorption-desorption process of active sites to the key reaction intermediate *OOH, thereby making it easier to release oxygen. This work will drive the development of wider area electron modulation methods and provide guidance for the surface engineering of 2D nanomaterials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超细纳米簇解开 3d-4f 电子梯,实现高效电催化水氧化。
二维(2D)纳米材料的巨大延伸平面被认为是电催化反应的理想场所。然而,由于其表面有序的配位构型,它们往往表现出催化惰性。在此,一种原位自氧化策略实现了超细 CeO2 纳米团簇在二维 Co(OH)2 上的高密度接枝。通过形成 Co-O-Ce 单元,流入的活性单元在 Co(OH)2 的惰性界面上被激活。优化后的催化剂具有氧进化反应活性,在 10 mA cm-2 的过电位比 Co(OH)2 低 83 mV。Co-O-Ce 单元中 Co(3d)和 Ce(4f)之间的级联轨道耦合通过开启 "d-f 电子阶梯 "推动了电子转移。同时,键序定理分析和 d 带中心显示,Co-3d-eg 的占有率得到了优化,以平衡活性位点对关键反应中间体 *OOH 的吸附-解吸过程,从而更容易释放氧气。这项工作将推动更大面积电子调制方法的发展,并为二维纳米材料的表面工程提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Biomimetic Peptide Nanonets: Exploiting Bacterial Entrapment and Macrophage Rerousing for Combatting Infections. Colloidal Hydrogel with Staged Sequestration and Release of Molecules Undergoing Competitive Binding. Evolution of Ferroelectric Properties in SmxBi1-xFeO3 via Automated Piezoresponse Force Microscopy across combinatorial spread libraries. Discovery of Isomerization Intermediates in CdS Magic-Size Clusters. Magneto-Responsive Chiral Optical Materials: Flow-Induced Twisting of Cellulose Nanocrystals in Patterned Magnetic Fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1