{"title":"Applications of chitosan in the agri-food sector: A review","authors":"Mathilde Bertrand , Scott Simonin , Benoit Bach","doi":"10.1016/j.carres.2024.109219","DOIUrl":null,"url":null,"abstract":"<div><p>Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms’ membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.</p></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"543 ","pages":"Article 109219"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008621524001988/pdfft?md5=c6484fbef33059886e2cd18afae6afe1&pid=1-s2.0-S0008621524001988-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524001988","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chitosan is a natural and renewable polysaccharide that can form biopolymers. It is derived from the deacetylation of chitin mainly from crustaceans' shells, but also from fungi and insects. Thanks to unique characteristics such as antimicrobial effects, antioxidant properties or film forming capacities, it has triggered an important amount of research in the last decade about possible applications in industrial fields. The main application field of chitosan is the food industry where it can be used for preservation purposes and shelf-life improvement for fresh food products such as fruits or meat. For beverages, it is used for clarification and fining as well as elimination of spoilage flora in beverages like fruit juices or wine. And in agriculture, it can be used as a plant protection product through different mechanisms like the elicitation of plant defences. The mechanisms of action of chitosan on microorganisms are multiple and complex but revolve mostly around the disturbance of microorganisms’ membranes and cell walls resulting in the leakage of cell material. The use of chitosan is still minor but is promising in finding environmentally friendly alternatives to synthetic chemicals and plastics. Therefore, its characterization is primordial for the future of sustainable production and preservation processes.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".