Intermittent fasting alleviates postoperative cognitive dysfunction by reducing neuroinflammation in aged mice

IF 3.5 3区 医学 Q2 NEUROSCIENCES Brain Research Bulletin Pub Date : 2024-07-23 DOI:10.1016/j.brainresbull.2024.111034
Lei Wang , Qiang Wang , Xiaoqing Wang , Chenyi Yang , Xinyi Wang , Huan Liu , Haiyun Wang
{"title":"Intermittent fasting alleviates postoperative cognitive dysfunction by reducing neuroinflammation in aged mice","authors":"Lei Wang ,&nbsp;Qiang Wang ,&nbsp;Xiaoqing Wang ,&nbsp;Chenyi Yang ,&nbsp;Xinyi Wang ,&nbsp;Huan Liu ,&nbsp;Haiyun Wang","doi":"10.1016/j.brainresbull.2024.111034","DOIUrl":null,"url":null,"abstract":"<div><p>Elderly individuals undergoing surgical procedures are often confronted with the peril of experiencing postoperative cognitive dysfunction (POCD). Prior research has demonstrated the exacerbating effect of sevoflurane anesthesia on neuroinflammation, which can further deteriorate the condition of POCD in elderly patients. Intermittent fasting (IF) restricts food consumption to a specific time window and has been demonstrated to ameliorate cognitive dysfunction induced by neuropathic inflammation. We subjected 18-month-old male mice to 16 hours of fasting and 8 hours of unrestricted eating over a 24-hour period for 0, 1, 2, and 4 weeks, followed by abdominal exploration under sevoflurane anesthesia. In this study, we aim to explore the potential impact of IF on postoperative cognitive function in aged mice undergoing sevoflurane surgery through the preoperative implementation of IF measures. The findings indicate two weeks of IF leads to a significant enhancement of learning and memory capabilities in mice following surgery. The cognitive performance, as determined by the novel object recognition and Morris water maze tests, as well as the synaptic plasticity, as measured by in vivo electrophysiological recordings, has demonstrated marked improvements. Furthermore, the administration of IF markedly enhances the expression of synaptic-associated proteins in hippocampal neurons, concomitant with a decreasing expression of pro-inflammatory factors and a reduced density of microglial cells within the hippocampal brain region. To summarize, the results of this study indicate that IF may mitigate inflammation in the hippocampal area of the brain. Furthermore, IF appears to provide a safeguard against cognitive impairment and synaptic plasticity impairment brought on by sevoflurane anesthesia.</p></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"216 ","pages":"Article 111034"},"PeriodicalIF":3.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0361923024001679/pdfft?md5=98452d5ffd92ae7d19567434f1ccaf7f&pid=1-s2.0-S0361923024001679-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024001679","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Elderly individuals undergoing surgical procedures are often confronted with the peril of experiencing postoperative cognitive dysfunction (POCD). Prior research has demonstrated the exacerbating effect of sevoflurane anesthesia on neuroinflammation, which can further deteriorate the condition of POCD in elderly patients. Intermittent fasting (IF) restricts food consumption to a specific time window and has been demonstrated to ameliorate cognitive dysfunction induced by neuropathic inflammation. We subjected 18-month-old male mice to 16 hours of fasting and 8 hours of unrestricted eating over a 24-hour period for 0, 1, 2, and 4 weeks, followed by abdominal exploration under sevoflurane anesthesia. In this study, we aim to explore the potential impact of IF on postoperative cognitive function in aged mice undergoing sevoflurane surgery through the preoperative implementation of IF measures. The findings indicate two weeks of IF leads to a significant enhancement of learning and memory capabilities in mice following surgery. The cognitive performance, as determined by the novel object recognition and Morris water maze tests, as well as the synaptic plasticity, as measured by in vivo electrophysiological recordings, has demonstrated marked improvements. Furthermore, the administration of IF markedly enhances the expression of synaptic-associated proteins in hippocampal neurons, concomitant with a decreasing expression of pro-inflammatory factors and a reduced density of microglial cells within the hippocampal brain region. To summarize, the results of this study indicate that IF may mitigate inflammation in the hippocampal area of the brain. Furthermore, IF appears to provide a safeguard against cognitive impairment and synaptic plasticity impairment brought on by sevoflurane anesthesia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
间歇性禁食可通过减少老年小鼠的神经炎症缓解术后认知功能障碍。
接受外科手术的老年人经常面临术后认知功能障碍(POCD)的危险。先前的研究表明,七氟醚麻醉会加重神经炎症,从而进一步恶化老年患者的认知功能障碍状况。间歇性禁食(IF)将食物摄入限制在一个特定的时间窗口内,已被证实能改善神经性炎症引起的认知功能障碍。我们让 18 个月大的雄性小鼠在 0 周、1 周、2 周和 4 周的 24 小时内分别禁食 16 小时和 8 小时,然后在七氟醚麻醉下进行腹部探查。在这项研究中,我们旨在通过术前实施 IF 措施,探讨 IF 对接受七氟醚手术的老年小鼠术后认知功能的潜在影响。研究结果表明,两周的 IF 可显著增强小鼠术后的学习和记忆能力。通过新物体识别和莫里斯水迷宫测试测定的认知能力,以及通过体内电生理记录测定的突触可塑性都有明显改善。此外,服用 IF 还能显著增强海马神经元中突触相关蛋白的表达,同时减少促炎因子的表达,降低海马脑区小胶质细胞的密度。总之,这项研究的结果表明,IF 可减轻大脑海马区的炎症反应。此外,IF似乎还能防止七氟醚麻醉带来的认知障碍和突触可塑性损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Research Bulletin
Brain Research Bulletin 医学-神经科学
CiteScore
6.90
自引率
2.60%
发文量
253
审稿时长
67 days
期刊介绍: The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.
期刊最新文献
Activation of MSK-1 exacerbates neuropathic pain through histone H3 phosphorylation in the rats' dorsal root ganglia and spinal dorsal horn. Deep Brain Stimulation on Cognition in Epilepsy:A Concentration on Learning and Memory. Corrigendum to "The effect of clozapine on immune-related biomarkers in schizophrenia patients" [Brain Res. Bull. 218 (2024) 111104]. Salidroside Ameliorates Neuroinflammation in Autistic Rats by Inhibiting NLRP3/Caspase-1/GSDMD Signal Pathway. The Effect of Exercise on Depression and Gut Microbiota: Possible Mechanisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1