Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-15 Epub Date: 2024-08-30 DOI:10.1242/jcs.261988
Hiroshi Otani, Ryota Nakazato, Kanae Koike, Keisuke Ohta, Koji Ikegami
{"title":"Excess microtubule and F-actin formation mediates shortening and loss of primary cilia in response to a hyperosmotic milieu.","authors":"Hiroshi Otani, Ryota Nakazato, Kanae Koike, Keisuke Ohta, Koji Ikegami","doi":"10.1242/jcs.261988","DOIUrl":null,"url":null,"abstract":"<p><p>The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.261988","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The primary cilium is a small organelle protruding from the cell surface that receives signals from the extracellular milieu. Although dozens of studies have reported that several genetic factors can impair the structure of primary cilia, evidence for environmental stimuli affecting primary cilia structures is limited. Here, we investigated an extracellular stress that affected primary cilia morphology and its underlying mechanisms. Hyperosmotic shock induced reversible shortening and disassembly of the primary cilia of murine intramedullary collecting duct cells. The shortening of primary cilia caused by hyperosmotic shock followed delocalization of the pericentriolar material (PCM). Excessive microtubule and F-actin formation in the cytoplasm coincided with the hyperosmotic shock-induced changes to primary cilia and the PCM. Treatment with a microtubule-disrupting agent, nocodazole, partially prevented the hyperosmotic shock-induced disassembly of primary cilia and almost completely prevented delocalization of the PCM. An actin polymerization inhibitor, latrunculin A, also partially prevented the hyperosmotic shock-induced shortening and disassembly of primary cilia and almost completely prevented delocalization of the PCM. We demonstrate that hyperosmotic shock induces reversible morphological changes in primary cilia and the PCM in a manner dependent on excessive formation of microtubule and F-actin.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微管和 F-肌动蛋白的过度形成介导了初级纤毛在高渗透环境下的缩短和脱落。
初级纤毛是突出于细胞表面的一个小细胞器,可接收来自细胞外环境的信号。尽管数十项研究报告称,一些遗传因素会损害初级纤毛的结构,但环境刺激影响初级纤毛结构的证据却很有限。在这里,我们研究了影响初级纤毛形态的细胞外应激及其内在机制。高渗休克诱导了小鼠髓内集合管细胞初级纤毛的可逆性缩短和解体。高渗休克导致的初级纤毛缩短是在极周物质(PCMs)脱定位之后发生的。细胞质中过量的微管和 F-肌动蛋白的形成与高渗休克引起的初级纤毛和 PCMs 的变化相吻合。微管干扰剂 Nocodazole 可部分防止高渗休克诱导的初级纤毛解体,同时几乎 100%地防止 PCM 的脱位。肌动蛋白聚合抑制剂 Latrunculin A 也能部分防止高渗休克诱导的初级纤毛缩短和解体,同时几乎 100%地防止 PCM 的脱位。我们证明,高渗休克诱导原生纤毛和 PCM 发生可逆的形态学变化,其方式依赖于微管和 F-肌动蛋白的过度形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1