Whole-Genome Resequencing Reveals Significant Genetic Differentiation Between Exserohilum turcicum Populations from Maize and Sorghum and Candidate Effector Genes Related to Host Specificity.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-10-01 Epub Date: 2024-10-07 DOI:10.1094/PHYTO-05-24-0172-R
Linkai Cui, Cong Wang, Mengqi Li, Yufeng Fang, Yanhong Hu
{"title":"Whole-Genome Resequencing Reveals Significant Genetic Differentiation Between <i>Exserohilum turcicum</i> Populations from Maize and Sorghum and Candidate Effector Genes Related to Host Specificity.","authors":"Linkai Cui, Cong Wang, Mengqi Li, Yufeng Fang, Yanhong Hu","doi":"10.1094/PHYTO-05-24-0172-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Exserohilum turcicum</i> is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of <i>E. turcicum</i> are divided into two formae speciales, namely <i>E. turcicum</i> f. sp. <i>zeae</i> and <i>E. turcicum</i> f. sp. <i>sorghi</i>. To date, the molecular mechanism underlying the host specificity of <i>E. turcicum</i> is marginally known. In this study, the whole genomes of 60 <i>E. turcicum</i> isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single-nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicated that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure revealed that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis showed that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with the host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named <i>SIX13-like</i>, <i>Ecp6</i>, <i>GH12</i>, <i>GH28-1</i>, <i>GH28-2</i>, and <i>CHP1</i>. Sequence polymorphism analysis revealed various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in <i>E. turcicum</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2351-2359"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-05-24-0172-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Exserohilum turcicum is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of E. turcicum are divided into two formae speciales, namely E. turcicum f. sp. zeae and E. turcicum f. sp. sorghi. To date, the molecular mechanism underlying the host specificity of E. turcicum is marginally known. In this study, the whole genomes of 60 E. turcicum isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single-nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicated that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure revealed that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis showed that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with the host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named SIX13-like, Ecp6, GH12, GH28-1, GH28-2, and CHP1. Sequence polymorphism analysis revealed various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in E. turcicum.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全基因组重测序揭示了来自玉米和高粱的 Exserohilum turcicum 群体之间的显著遗传分化,以及与宿主特异性相关的候选效应基因。
绿僵菌(Exserohilum turcicum)是一种毁灭性真菌病原体,可感染玉米和高粱,导致这两种作物严重的叶片病害。根据寄主特异性,E. turcicum 的病原分离物被分为两种特殊形式,即 E. turcicum f. sp. zeae 和 E. turcicum f. sp. sorghi。迄今为止,人们对E. turcicum宿主特异性的分子机制知之甚少。在这项研究中,对从玉米和高粱中收集到的 60 株 E. turcicum 分离物的全基因组进行了重新测序,共鉴定出 233 022 个单核苷酸多态性(SNPs)。系统发育分析表明,所有分离株都被分为四个基因组,它们与宿主来源关系密切。主成分分析的结果也验证了这一观点。种群结构分析表明,来自玉米和高粱的两个种群之间存在明显的遗传分化。进一步分析表明,5431 个 SNPs(包括 612 个非同义 SNPs)与宿主来源完全共分离。这些非同义 SNP 位于 539 个基因中,其中 18 个基因被预测编码分泌蛋白,包括 6 个假定效应基因,分别命名为 SIX13-like、Ecp6、GH12、GH28-1、GH28-2 和 CHP1。序列多态性分析显示,这些基因的编码区存在不同数量的 SNPs。这些发现为了解土耳其大肠杆菌宿主特异性的分子基础提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Validation of PCR Diagnostic Assays for Detection and Identification of All Ralstonia solanacearum Sequevars Causing Moko Disease in Banana. Building Accelerated Plant Breeding Pipelines: Screening to Evaluate Lima Bean Resistance to Root-Knot Nematode in Diverse Inbred Lines and Segregating Breeding Populations. First Reported Sexual Recombination Between Pyrenophora teres Isolates from Barley and Barley Grass. Mapping Seedling and Adult Plant Leaf Rust Resistance Genes in the Durum Wheat Cultivar Strongfield and Other Triticum turgidum Lines. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1