Whole-Genome Resequencing Reveals Significant Genetic Differentiation Between Exserohilum turcicum Populations from Maize and Sorghum and Candidate Effector Genes Related to Host Specificity.
Linkai Cui, Cong Wang, Mengqi Li, Yufeng Fang, Yanhong Hu
{"title":"Whole-Genome Resequencing Reveals Significant Genetic Differentiation Between <i>Exserohilum turcicum</i> Populations from Maize and Sorghum and Candidate Effector Genes Related to Host Specificity.","authors":"Linkai Cui, Cong Wang, Mengqi Li, Yufeng Fang, Yanhong Hu","doi":"10.1094/PHYTO-05-24-0172-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Exserohilum turcicum</i> is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of <i>E. turcicum</i> are divided into two formae speciales, namely <i>E. turcicum</i> f. sp. <i>zeae</i> and <i>E. turcicum</i> f. sp. <i>sorghi</i>. To date, the molecular mechanism underlying the host specificity of <i>E. turcicum</i> is marginally known. In this study, the whole genomes of 60 <i>E. turcicum</i> isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single-nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicated that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure revealed that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis showed that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with the host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named <i>SIX13-like</i>, <i>Ecp6</i>, <i>GH12</i>, <i>GH28-1</i>, <i>GH28-2</i>, and <i>CHP1</i>. Sequence polymorphism analysis revealed various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in <i>E. turcicum</i>.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2351-2359"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-05-24-0172-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exserohilum turcicum is a devastating fungal pathogen that infects both maize and sorghum, leading to severe leaf diseases of the two crops. According to host specificity, pathogenic isolates of E. turcicum are divided into two formae speciales, namely E. turcicum f. sp. zeae and E. turcicum f. sp. sorghi. To date, the molecular mechanism underlying the host specificity of E. turcicum is marginally known. In this study, the whole genomes of 60 E. turcicum isolates collected from both maize and sorghum were resequenced, which enabled identification of 233,022 single-nucleotide polymorphisms (SNPs) in total. Phylogenetic analysis indicated that all isolates are clustered into four genetic groups that have a close relationship with host source. This observation is validated by the result of principal component analysis. Analysis of population structure revealed that there is obvious genetic differentiation between two populations from maize and sorghum. Further analysis showed that 5,431 SNPs, including 612 nonsynonymous SNPs, are completely co-segregated with the host source. These nonsynonymous SNPs are located in 539 genes, among which 18 genes are predicted to encode secretory proteins, including six putative effector genes named SIX13-like, Ecp6, GH12, GH28-1, GH28-2, and CHP1. Sequence polymorphism analysis revealed various numbers of SNPs in the coding regions of these genes. These findings provide new insights into the molecular basis of host specificity in E. turcicum.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.