Realistic Scenarios of Phenotypic Variation and Errors in High-Throughput Phenotyping Experiments Minimally Impact the Results of QTL Mapping Analysis.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2025-02-25 DOI:10.1094/PHYTO-01-25-0007-FI
Aliyah Brewer, Anna Underhill, Surya Sapkota, Chin-Feng Hwang, Summaira Riaz, Madeline Oravec, Lance Cadle-Davidson
{"title":"Realistic Scenarios of Phenotypic Variation and Errors in High-Throughput Phenotyping Experiments Minimally Impact the Results of QTL Mapping Analysis.","authors":"Aliyah Brewer, Anna Underhill, Surya Sapkota, Chin-Feng Hwang, Summaira Riaz, Madeline Oravec, Lance Cadle-Davidson","doi":"10.1094/PHYTO-01-25-0007-FI","DOIUrl":null,"url":null,"abstract":"<p><p>High-throughput phenotyping technologies increase the efficiency of breeding programs, but with larger data sets, errors can accumulate. Plant breeders often conduct quantitative trait locus (QTL) mapping, where large sample size and accurate quantitative response estimates are important for detecting small effect QTL. This study examined how phenotype error, inconsistency, and replication changed QTL magnitude and location. Three real sets of phenotype data were used from microscopy robot analysis of grapevine powdery mildew (<i>Erysiphe necator</i>) severity, which previously resulted in discovery of large (R<sup>2</sup> = 85%), intermediate (R<sup>2</sup> = 45%), and small (R<sup>2</sup> = 9%) effect QTL. Custom R scripts were written to induce several realistic sources of error, inconsistency, and varied replication. The results were remarkably robust to these changes. Swapping or shifting 2% of samples or changing disease severity by 50% on one replicate had negligible impact on QTL. Unreplicated simulations produced the largest LOD score range (5.55 to 8.27) and mean LOD score deviation (-1.72 to -3.22; Cohen's D = 1.48 to 2.12). The large effect size QTL (<i>REN12</i>) was always detected. The intermediate effect size QTL (<i>REN13</i>) was detected except when three of the eight replicates were analyzed individually. Even for the small effect size locus (<i>NYVPLG9</i>), error scenarios rarely (2 of 9000 cases) eliminated significant QTL detection, versus no replication (9 of 10). Thus, the benefits of data volume associated with high-throughput phenotyping technologies outweigh the cost of the increased errors tested here. Instead, focus should be spent on examining how each experimental replicate contributes to the result of the QTL mapping analysis.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-01-25-0007-FI","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

High-throughput phenotyping technologies increase the efficiency of breeding programs, but with larger data sets, errors can accumulate. Plant breeders often conduct quantitative trait locus (QTL) mapping, where large sample size and accurate quantitative response estimates are important for detecting small effect QTL. This study examined how phenotype error, inconsistency, and replication changed QTL magnitude and location. Three real sets of phenotype data were used from microscopy robot analysis of grapevine powdery mildew (Erysiphe necator) severity, which previously resulted in discovery of large (R2 = 85%), intermediate (R2 = 45%), and small (R2 = 9%) effect QTL. Custom R scripts were written to induce several realistic sources of error, inconsistency, and varied replication. The results were remarkably robust to these changes. Swapping or shifting 2% of samples or changing disease severity by 50% on one replicate had negligible impact on QTL. Unreplicated simulations produced the largest LOD score range (5.55 to 8.27) and mean LOD score deviation (-1.72 to -3.22; Cohen's D = 1.48 to 2.12). The large effect size QTL (REN12) was always detected. The intermediate effect size QTL (REN13) was detected except when three of the eight replicates were analyzed individually. Even for the small effect size locus (NYVPLG9), error scenarios rarely (2 of 9000 cases) eliminated significant QTL detection, versus no replication (9 of 10). Thus, the benefits of data volume associated with high-throughput phenotyping technologies outweigh the cost of the increased errors tested here. Instead, focus should be spent on examining how each experimental replicate contributes to the result of the QTL mapping analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Population Dynamics, Route of Infection, and Velocity of Systemic Spread of Erwinia amylovora in Infected Apple Branches. Exogenous BR Enhances Host Resistance to Rhizoctonia solani Through Reactive Oxygen Species Homeostasis and Photosynthesis Improvement in Oryza sativa. Realistic Scenarios of Phenotypic Variation and Errors in High-Throughput Phenotyping Experiments Minimally Impact the Results of QTL Mapping Analysis. Early Soybean-Nematode Interactions: Transcriptomic Responses of Meloidogyne incognita at the Pre-Parasitic Stage and Metabolomic Profiling of Root Exudates. MutL Interaction with RaxM Regulates raxX Expression in Xanthomonas oryzae pv. oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1