Mandi Liu , Fengjun Xiang , Jialu Pan , Yongzhi Xue , Maoyuan Sun , Kuan Zhao , Wuchao Zhang , Baishi Lei , Peipei Gao , Limin Li , Wanzhe Yuan
{"title":"Host-derived lactic acid bacteria alleviate short beak and dwarf syndrome by preventing bone loss, intestinal barrier disruption, and inflammation","authors":"Mandi Liu , Fengjun Xiang , Jialu Pan , Yongzhi Xue , Maoyuan Sun , Kuan Zhao , Wuchao Zhang , Baishi Lei , Peipei Gao , Limin Li , Wanzhe Yuan","doi":"10.1016/j.vetmic.2024.110187","DOIUrl":null,"url":null,"abstract":"<div><p>Short-beak and dwarf syndrome (SBDS) is caused by novel goose parvovirus (NGPV) infection, which leads to farm economic losses. Our research aimed to investigate the potential of administering isolated lactic acid bacteria (LAB) in alleviating SBDS in ducks. Eight wild LAB strains were isolated from duck feces and their biosecurity was investigated in both duck embryo fibroblast (DEF) and live ducks. Moreover, the LAB strains exhibited no detrimental effects on bone metabolism levels and facilitated the tight junction proteins (TJPs) mRNA expression, and contributing to the mitigation of inflammation in healthy ducks. Subsequently, we conducted in vitrol and in vivo experiments to assess the impact of LAB on NGPV infection. The LAB strains significantly reduced the viral load of NGPV and downregulated the mRNA levels of pro-inflammatory factors in DEF. Additionally, LAB treatment alleviated SBDS in NGPV-infected ducks. Furthermore, LAB treatment alleviated intestinal damage, and reduced the inflammatory response, while also mitigating bone resorption in NGPV-infected ducks. In conclusion, the LAB strains isolated from duck feces have favorable biosecurity and alleviate SBDS in ducks, and the mechanism related to LAB improves intestinal barrier integrity, alleviates inflammation, and reduces bone resorption. Our study presents a novel concept for the prevention and treatment of NGPV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NGPV.</p></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"296 ","pages":"Article 110187"},"PeriodicalIF":2.4000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524002098","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Short-beak and dwarf syndrome (SBDS) is caused by novel goose parvovirus (NGPV) infection, which leads to farm economic losses. Our research aimed to investigate the potential of administering isolated lactic acid bacteria (LAB) in alleviating SBDS in ducks. Eight wild LAB strains were isolated from duck feces and their biosecurity was investigated in both duck embryo fibroblast (DEF) and live ducks. Moreover, the LAB strains exhibited no detrimental effects on bone metabolism levels and facilitated the tight junction proteins (TJPs) mRNA expression, and contributing to the mitigation of inflammation in healthy ducks. Subsequently, we conducted in vitrol and in vivo experiments to assess the impact of LAB on NGPV infection. The LAB strains significantly reduced the viral load of NGPV and downregulated the mRNA levels of pro-inflammatory factors in DEF. Additionally, LAB treatment alleviated SBDS in NGPV-infected ducks. Furthermore, LAB treatment alleviated intestinal damage, and reduced the inflammatory response, while also mitigating bone resorption in NGPV-infected ducks. In conclusion, the LAB strains isolated from duck feces have favorable biosecurity and alleviate SBDS in ducks, and the mechanism related to LAB improves intestinal barrier integrity, alleviates inflammation, and reduces bone resorption. Our study presents a novel concept for the prevention and treatment of NGPV, thereby establishing a theoretical foundation for the future development of probiotics in the prevention and treatment of NGPV.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.