Characteristics of maternal antibodies transferred to foals raised through maternal equine rotavirus A vaccination

IF 2.4 2区 农林科学 Q3 MICROBIOLOGY Veterinary microbiology Pub Date : 2024-11-12 DOI:10.1016/j.vetmic.2024.110304
Lianne G. Eertink , Megan Swope , Tirth Uprety , Chithra Sreenivasan , Allen E. Page , Emma N. Adam , Dan Wang , Feng Li
{"title":"Characteristics of maternal antibodies transferred to foals raised through maternal equine rotavirus A vaccination","authors":"Lianne G. Eertink ,&nbsp;Megan Swope ,&nbsp;Tirth Uprety ,&nbsp;Chithra Sreenivasan ,&nbsp;Allen E. Page ,&nbsp;Emma N. Adam ,&nbsp;Dan Wang ,&nbsp;Feng Li","doi":"10.1016/j.vetmic.2024.110304","DOIUrl":null,"url":null,"abstract":"<div><div>Equine rotavirus A (ERVA) can cause foal diarrhoea and the most common ERVA genotypes are G3P[12] and G14P[12]. Since the introduction of a monovalent killed G3P[12] vaccine, infection in neonates has decreased. We aimed to determine the dynamics and longevity of maternally derived anti-G3P[12] neutralizing antibodies (NAbs) in foals and what, if any, cross-reactivity exists between maternally derived NAbs against G14P[12]. Serum samples were collected from 50 mare-foal pairs before each vaccination and up to 6 months post-foaling for mares and up to 7 months of age for foals. These samples were then used for virus-neutralization antibody assays with both G3P[12] and G14P[12] viruses. We observed that vaccination of mares could increase their serum NAb titers. Pre-nursing serum samples of foals collected at birth before the first nursing contained no detectable NAbs. In contrast, post-nursing serum samples of foals showed a significant amount of NAb levels, thereby confirming that these NAbs are passed through the mare’s colostrum. Our study demonstrated that there is variation in the ratio of NAbs transferred from the serum of mares to the serum of their foals. Results also confirmed evidence of cross-reactivity between maternal antibodies in the serum of G3P[12] vaccinated dams and G14P[12]. Heterologous (G14P[12]) NAb titers were about 2- to 4-fold lower than homologous (G3P[12]) titers in colostrum, milk, and serum samples of both mares and their foals. Our data demonstrate that G3 and G14 NAbs in the serum of foals decreased steadily over time with the lowest point measured at approximately 4 months of age.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"299 ","pages":"Article 110304"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113524003262","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Equine rotavirus A (ERVA) can cause foal diarrhoea and the most common ERVA genotypes are G3P[12] and G14P[12]. Since the introduction of a monovalent killed G3P[12] vaccine, infection in neonates has decreased. We aimed to determine the dynamics and longevity of maternally derived anti-G3P[12] neutralizing antibodies (NAbs) in foals and what, if any, cross-reactivity exists between maternally derived NAbs against G14P[12]. Serum samples were collected from 50 mare-foal pairs before each vaccination and up to 6 months post-foaling for mares and up to 7 months of age for foals. These samples were then used for virus-neutralization antibody assays with both G3P[12] and G14P[12] viruses. We observed that vaccination of mares could increase their serum NAb titers. Pre-nursing serum samples of foals collected at birth before the first nursing contained no detectable NAbs. In contrast, post-nursing serum samples of foals showed a significant amount of NAb levels, thereby confirming that these NAbs are passed through the mare’s colostrum. Our study demonstrated that there is variation in the ratio of NAbs transferred from the serum of mares to the serum of their foals. Results also confirmed evidence of cross-reactivity between maternal antibodies in the serum of G3P[12] vaccinated dams and G14P[12]. Heterologous (G14P[12]) NAb titers were about 2- to 4-fold lower than homologous (G3P[12]) titers in colostrum, milk, and serum samples of both mares and their foals. Our data demonstrate that G3 and G14 NAbs in the serum of foals decreased steadily over time with the lowest point measured at approximately 4 months of age.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过母体接种马轮状病毒 A 疫苗转移给小马驹的母源抗体的特征。
马轮状病毒 A (ERVA) 可导致马驹腹泻,最常见的 ERVA 基因型为 G3P[12] 和 G14P[12]。自引入单价 G3P[12] 杀毒疫苗以来,新生儿的感染率有所下降。我们的目的是确定马驹体内母源抗G3P[12]中和抗体(NAbs)的动态和寿命,以及母源NAbs与G14P[12]之间是否存在交叉反应。在每次接种疫苗前、母马产后 6 个月和小马驹 7 个月大时,从 50 对母马和小马驹中采集血清样本。然后用这些样本对 G3P[12] 和 G14P[12] 病毒进行病毒中和抗体检测。我们观察到,母马接种疫苗可提高其血清 NAb 滴度。第一次哺乳前采集的小马驹出生时的血清样本中未检测到 NAb。相比之下,哺乳后的小马驹血清样本则显示出大量的 NAb 水平,从而证实这些 NAb 是通过母马的初乳传递的。我们的研究表明,从母马血清中转移到马驹血清中的 NAb 比例存在差异。研究结果还证实,接种过 G3P[12] 疫苗的母马血清中的母源抗体与 G14P[12] 之间存在交叉反应。在母马及其马驹的初乳、乳汁和血清样本中,异源(G14P[12])NAb滴度比同源(G3P[12])滴度低约2-4倍。我们的数据表明,随着时间的推移,小马驹血清中的 G3 和 G14 NAb 会稳步下降,最低点大约在 4 个月大时测得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Veterinary microbiology
Veterinary microbiology 农林科学-兽医学
CiteScore
5.90
自引率
6.10%
发文量
221
审稿时长
52 days
期刊介绍: Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal. Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge. Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.
期刊最新文献
Dihydrolipoamide acetyltransferase is a key factor mediating adhesion and invasion of host cells by Mycoplasma synoviae. Type I-E CRISPR-Cas system regulates fimZY and T3SS1 genes expression in Salmonella enterica serovar Pullorum. Characteristics of maternal antibodies transferred to foals raised through maternal equine rotavirus A vaccination The C3d-fused Porcine circovirus type 2d virus-like particle induced early and enhanced immune response and protected pigs against challenge A new S1 subunit truncation vaccine induces effective protection against porcine deltacoronavirus in suckling piglets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1