Machine learning for accurate detection of small airway dysfunction-related respiratory changes: an observational study.

IF 5.8 2区 医学 Q1 Medicine Respiratory Research Pub Date : 2024-07-24 DOI:10.1186/s12931-024-02911-1
Wen-Jing Xu, Wen-Yi Shang, Jia-Ming Feng, Xin-Yue Song, Liang-Yuan Li, Xin-Peng Xie, Yan-Mei Wang, Bin-Miao Liang
{"title":"Machine learning for accurate detection of small airway dysfunction-related respiratory changes: an observational study.","authors":"Wen-Jing Xu, Wen-Yi Shang, Jia-Ming Feng, Xin-Yue Song, Liang-Yuan Li, Xin-Peng Xie, Yan-Mei Wang, Bin-Miao Liang","doi":"10.1186/s12931-024-02911-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The use of machine learning(ML) methods would improve the diagnosis of small airway dysfunction(SAD) in subjects with chronic respiratory symptoms and preserved pulmonary function(PPF). This paper evaluated the performance of several ML algorithms associated with the impulse oscillometry(IOS) analysis to aid in the diagnostic of respiratory changes in SAD. We also find out the best configuration for this task.</p><p><strong>Methods: </strong>IOS and spirometry were measured in 280 subjects, including a healthy control group (n = 78), a group with normal spirometry (n = 158) and a group with abnormal spirometry (n = 44). Various supervised machine learning (ML) algorithms and feature selection strategies were examined, such as Support Vector Machines (SVM), Random Forests (RF), Adaptive Boosting (ADABOOST), Navie Bayesian (BAYES), and K-Nearest Neighbors (KNN).</p><p><strong>Results: </strong>The first experiment of this study demonstrated that the best oscillometric parameter (BOP) was R5, with an AUC value of 0.642, when comparing a healthy control group(CG) with patients in the group without lung volume-defined SAD(PPFN). The AUC value of BOP in the control group was 0.769 compared with patients with spirometry defined SAD(PPFA) in the PPF population. In the second experiment, the ML technique was used. In CGvsPPFN, RF and ADABOOST had the best diagnostic results (AUC = 0.914, 0.915), with significantly higher accuracy compared to BOP (p < 0.01). In CGvsPPFA, RF and ADABOOST had the best diagnostic results (AUC = 0.951, 0.971) and significantly higher diagnostic accuracy (p < 0.01). In the third, fourth and fifth experiments, different feature selection techniques allowed us to find the best IOS parameters (R5, (R5-R20)/R5 and Fres). The results demonstrate that the performance of ADABOOST remained essentially unaltered following the application of the feature selector, whereas the diagnostic accuracy of the remaining four classifiers (RF, SVM, BAYES, and KNN) is marginally enhanced.</p><p><strong>Conclusions: </strong>IOS combined with ML algorithms provide a new method for diagnosing SAD in subjects with chronic respiratory symptoms and PPF. The present study's findings provide evidence that this combination may help in the early diagnosis of respiratory changes in these patients.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11270925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-024-02911-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The use of machine learning(ML) methods would improve the diagnosis of small airway dysfunction(SAD) in subjects with chronic respiratory symptoms and preserved pulmonary function(PPF). This paper evaluated the performance of several ML algorithms associated with the impulse oscillometry(IOS) analysis to aid in the diagnostic of respiratory changes in SAD. We also find out the best configuration for this task.

Methods: IOS and spirometry were measured in 280 subjects, including a healthy control group (n = 78), a group with normal spirometry (n = 158) and a group with abnormal spirometry (n = 44). Various supervised machine learning (ML) algorithms and feature selection strategies were examined, such as Support Vector Machines (SVM), Random Forests (RF), Adaptive Boosting (ADABOOST), Navie Bayesian (BAYES), and K-Nearest Neighbors (KNN).

Results: The first experiment of this study demonstrated that the best oscillometric parameter (BOP) was R5, with an AUC value of 0.642, when comparing a healthy control group(CG) with patients in the group without lung volume-defined SAD(PPFN). The AUC value of BOP in the control group was 0.769 compared with patients with spirometry defined SAD(PPFA) in the PPF population. In the second experiment, the ML technique was used. In CGvsPPFN, RF and ADABOOST had the best diagnostic results (AUC = 0.914, 0.915), with significantly higher accuracy compared to BOP (p < 0.01). In CGvsPPFA, RF and ADABOOST had the best diagnostic results (AUC = 0.951, 0.971) and significantly higher diagnostic accuracy (p < 0.01). In the third, fourth and fifth experiments, different feature selection techniques allowed us to find the best IOS parameters (R5, (R5-R20)/R5 and Fres). The results demonstrate that the performance of ADABOOST remained essentially unaltered following the application of the feature selector, whereas the diagnostic accuracy of the remaining four classifiers (RF, SVM, BAYES, and KNN) is marginally enhanced.

Conclusions: IOS combined with ML algorithms provide a new method for diagnosing SAD in subjects with chronic respiratory symptoms and PPF. The present study's findings provide evidence that this combination may help in the early diagnosis of respiratory changes in these patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
准确检测小气道功能障碍相关呼吸变化的机器学习:一项观察性研究。
背景:使用机器学习(ML)方法可以改善对有慢性呼吸道症状且肺功能(PPF)保留的受试者的小气道功能障碍(SAD)的诊断。本文评估了与脉冲振荡仪(IOS)分析相关的几种 ML 算法的性能,以帮助诊断 SAD 的呼吸变化。我们还找出了这项任务的最佳配置:方法:对 280 名受试者的 IOS 和肺活量进行了测量,其中包括健康对照组(78 人)、肺活量正常组(158 人)和肺活量异常组(44 人)。研究考察了各种有监督的机器学习(ML)算法和特征选择策略,如支持向量机(SVM)、随机森林(RF)、自适应提升(ADABOOST)、纳维贝叶斯(BAYES)和K-近邻(KNN):本研究的第一个实验表明,在比较健康对照组(CG)和无肺容积定义的 SAD(PPFN)组患者时,最佳示波参数(BOP)是 R5,其 AUC 值为 0.642。对照组 BOP 的 AUC 值为 0.769,而 PPF 组中有肺活量定义的 SAD(PPFA)的患者的 AUC 值为 0.769。第二次实验采用了 ML 技术。在 CGvsPPFN 中,RF 和 ADABOOST 的诊断结果最好(AUC = 0.914、0.915),与 BOP 相比,准确率明显更高(p 结论:IOS 与 ML 算法的结合是一种新的诊断方法:IOS 结合 ML 算法为诊断慢性呼吸道症状和 PPF 患者的 SAD 提供了一种新方法。本研究的结果提供了证据,证明这种组合可能有助于早期诊断这些患者的呼吸系统变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
期刊最新文献
Ivacaftor ameliorates mucus burden, bacterial load, and inflammation in acute but not chronic P. aeruginosa infection in hG551D rats. Loss of interferon regulatory factor-1 prevents lung fibrosis by upregulation of pon1 expression. Patient-centered care in pulmonary fibrosis: access, anticipate, and act. Shenqifuzheng injection inhibits lactic acid-induced cisplatin resistance in NSCLC by affecting FBXO22/p53 axis through FOXO3. Quantitative micro-CT-derived biomarkers elucidate age-related lung fibrosis in elder mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1