Delving into the Complexity of Analogical Reasoning: A Detailed Exploration with the Generalized Multicomponent Latent Trait Model for Diagnosis.

IF 2.8 3区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Journal of Intelligence Pub Date : 2024-07-18 DOI:10.3390/jintelligence12070067
Eduar S Ramírez, Marcos Jiménez, Víthor Rosa Franco, Jesús M Alvarado
{"title":"Delving into the Complexity of Analogical Reasoning: A Detailed Exploration with the Generalized Multicomponent Latent Trait Model for Diagnosis.","authors":"Eduar S Ramírez, Marcos Jiménez, Víthor Rosa Franco, Jesús M Alvarado","doi":"10.3390/jintelligence12070067","DOIUrl":null,"url":null,"abstract":"<p><p>Research on analogical reasoning has facilitated the understanding of response processes such as pattern identification and creative problem solving, emerging as an intelligence predictor. While analogical tests traditionally combine various composition rules for item generation, current statistical models like the Logistic Latent Trait Model (LLTM) and Embretson's Multicomponent Latent Trait Model for Diagnosis (MLTM-D) face limitations in handling the inherent complexity of these processes, resulting in suboptimal model fit and interpretation. The primary aim of this research was to extend Embretson's MLTM-D to encompass complex multidimensional models that allow the estimation of item parameters. Concretely, we developed a three-parameter (3PL) version of the MLTM-D that provides more informative interpretations of participant response processes. We developed the Generalized Multicomponent Latent Trait Model for Diagnosis (GMLTM-D), which is a statistical model that extends Embretson's multicomponent model to explore complex analogical theories. The GMLTM-D was compared with LLTM and MLTM-D using data from a previous study of a figural analogical reasoning test composed of 27 items based on five composition rules: figure rotation, trapezoidal rotation, reflection, segment subtraction, and point movement. Additionally, we provide an R package (GMLTM) for conducting Bayesian estimation of the models mentioned. The GMLTM-D more accurately replicated the observed data compared to the Bayesian versions of LLTM and MLTM-D, demonstrating a better model fit and superior predictive accuracy. Therefore, the GMLTM-D is a reliable model for analyzing analogical reasoning data and calibrating intelligence tests. The GMLTM-D embraces the complexity of real data and enhances the understanding of examinees' response processes.</p>","PeriodicalId":52279,"journal":{"name":"Journal of Intelligence","volume":"12 7","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11277614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligence","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3390/jintelligence12070067","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Research on analogical reasoning has facilitated the understanding of response processes such as pattern identification and creative problem solving, emerging as an intelligence predictor. While analogical tests traditionally combine various composition rules for item generation, current statistical models like the Logistic Latent Trait Model (LLTM) and Embretson's Multicomponent Latent Trait Model for Diagnosis (MLTM-D) face limitations in handling the inherent complexity of these processes, resulting in suboptimal model fit and interpretation. The primary aim of this research was to extend Embretson's MLTM-D to encompass complex multidimensional models that allow the estimation of item parameters. Concretely, we developed a three-parameter (3PL) version of the MLTM-D that provides more informative interpretations of participant response processes. We developed the Generalized Multicomponent Latent Trait Model for Diagnosis (GMLTM-D), which is a statistical model that extends Embretson's multicomponent model to explore complex analogical theories. The GMLTM-D was compared with LLTM and MLTM-D using data from a previous study of a figural analogical reasoning test composed of 27 items based on five composition rules: figure rotation, trapezoidal rotation, reflection, segment subtraction, and point movement. Additionally, we provide an R package (GMLTM) for conducting Bayesian estimation of the models mentioned. The GMLTM-D more accurately replicated the observed data compared to the Bayesian versions of LLTM and MLTM-D, demonstrating a better model fit and superior predictive accuracy. Therefore, the GMLTM-D is a reliable model for analyzing analogical reasoning data and calibrating intelligence tests. The GMLTM-D embraces the complexity of real data and enhances the understanding of examinees' response processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深入探究类比推理的复杂性:利用通用多成分潜在特质诊断模型的详细探索。
对类比推理的研究促进了对模式识别和创造性问题解决等反应过程的理解,并逐渐成为一种智力预测工具。虽然类比推理测验传统上结合了各种构成规则来生成题目,但目前的统计模型,如逻辑潜在特质模型(LLTM)和恩布雷顿的多成分潜在特质诊断模型(MLTM-D),在处理这些过程的内在复杂性方面存在局限性,导致模型拟合和解释效果不理想。本研究的主要目的是扩展 Embretson 的 MLTM-D,使其涵盖可估算项目参数的复杂多维模型。具体来说,我们开发了一个三参数(3PL)版本的 MLTM-D,它能对被试的反应过程提供更多的解释。我们开发了用于诊断的广义多成分潜在特质模型(GMLTM-D),这是一个统计模型,它扩展了恩布雷特森的多成分模型,以探索复杂的类比理论。GMLTM-D 与 LLTM 和 MLTM-D 进行了比较,使用的数据来自之前对一个图形类比推理测试的研究,该测试由 27 个项目组成,基于五种构成规则:图形旋转、梯形旋转、反射、线段减法和点移动。此外,我们还提供了一个 R 软件包(GMLTM),用于对上述模型进行贝叶斯估计。与贝叶斯版本的 LLTM 和 MLTM-D 相比,GMLTM-D 更准确地复制了观察到的数据,显示出更好的模型拟合度和更高的预测准确性。因此,GMLTM-D 是分析类比推理数据和校准智力测验的可靠模型。GMLTM-D包含了真实数据的复杂性,增强了对考生反应过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligence
Journal of Intelligence Social Sciences-Education
CiteScore
2.80
自引率
17.10%
发文量
0
审稿时长
11 weeks
期刊最新文献
An Embedding-Based Semantic Analysis Approach: A Preliminary Study on Redundancy Detection in Psychological Concepts Operationalized by Scales. Development and Validation of a Game-Based Assessment for Complex Problem Solving. Teachers' and Parents' Assessments of Primary School Children's Intellectual Investment as Predictors of Change in Need for Cognition. Teachers' Growth Mindset, Perceived School Climate, and Perceived Parental Autonomy Support Moderate the Relationship Between Students' Growth Mindset and Academic Achievement. Differences in Personality Between High-Ability and Average-Ability University Students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1