A crosstalk between 'osteocyte lacunal-canalicular system' and metabolism.

3区 生物学 Q1 Biochemistry, Genetics and Molecular Biology Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-12-26 DOI:10.1016/bs.apcsb.2023.12.019
Ebtesam A Al-Suhaimi, Sultan Akhtar, Fatima A Al Hubail, Hussain Alhawaj, Meneerah A Aljafary, Hamad S Alrumaih, Amira Daghestani, Alanwood Al-Buainain, Amer Lardhi, A M Homeida
{"title":"A crosstalk between 'osteocyte lacunal-canalicular system' and metabolism.","authors":"Ebtesam A Al-Suhaimi, Sultan Akhtar, Fatima A Al Hubail, Hussain Alhawaj, Meneerah A Aljafary, Hamad S Alrumaih, Amira Daghestani, Alanwood Al-Buainain, Amer Lardhi, A M Homeida","doi":"10.1016/bs.apcsb.2023.12.019","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the importance, bone physiology has long been studied to understand what systematic and cellular impact its cells and functions have. Exploring more questions is a substantially solid way to improve the understanding of bone physiological functions in/out sides. In adult bone, osteocytes (Ots) form about 95% of bone cells and live the longest lifespan inside their mineralized surroundings. Ots are the endocrine cells and originate from blood vessel's endothelial cells. In this work, we discussed the vital role of the \"Ots\". To determine the association between osteocytes' network with metabolic parameters in healthy mice, the experiments were performed on ten (10) adult C57BL6 male mice. Fasting blood and bone samples were collected weekly from mice for measurement of metabolic parameters and bone morphology. Scanning electron microscopy (SEM) revealed a 2D fine morphology of the bone which indicates a strong functional interconnection with bone nano/micro, and macro components of the organs. The long-branched canaliculi look like neurocytes in structure. The morphology and quantitative measurements of the osteocyte lacunal-canalicular system showed its wide spectrum spatial resolution of the positive and negative relationship within this system or metabolite parameters, confirming a strong cross connection between osteocyte lacunal-canalicular system and metabolism. We believe that the findings of this study can deliver a strategy about the potential roles of metabolic relation among osteocytes, insulin, and lipid in management of bone and metabolic diseases.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"142 ","pages":"397-420"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in protein chemistry and structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.apcsb.2023.12.019","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the importance, bone physiology has long been studied to understand what systematic and cellular impact its cells and functions have. Exploring more questions is a substantially solid way to improve the understanding of bone physiological functions in/out sides. In adult bone, osteocytes (Ots) form about 95% of bone cells and live the longest lifespan inside their mineralized surroundings. Ots are the endocrine cells and originate from blood vessel's endothelial cells. In this work, we discussed the vital role of the "Ots". To determine the association between osteocytes' network with metabolic parameters in healthy mice, the experiments were performed on ten (10) adult C57BL6 male mice. Fasting blood and bone samples were collected weekly from mice for measurement of metabolic parameters and bone morphology. Scanning electron microscopy (SEM) revealed a 2D fine morphology of the bone which indicates a strong functional interconnection with bone nano/micro, and macro components of the organs. The long-branched canaliculi look like neurocytes in structure. The morphology and quantitative measurements of the osteocyte lacunal-canalicular system showed its wide spectrum spatial resolution of the positive and negative relationship within this system or metabolite parameters, confirming a strong cross connection between osteocyte lacunal-canalicular system and metabolism. We believe that the findings of this study can deliver a strategy about the potential roles of metabolic relation among osteocytes, insulin, and lipid in management of bone and metabolic diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨细胞腔-颅骨系统 "与新陈代谢之间的相互联系
考虑到其重要性,人们长期以来一直在研究骨生理学,以了解其细胞和功能对系统和细胞的影响。探索更多问题是提高对骨内外生理功能认识的重要途径。在成人骨骼中,骨细胞(Ots)构成了约 95% 的骨细胞,并且在其矿化环境中寿命最长。Ots 是内分泌细胞,源自血管内皮细胞。在这项工作中,我们讨论了 "Ots "的重要作用。为了确定骨细胞网络与健康小鼠代谢参数之间的关联,我们对十(10)只成年 C57BL6 雄性小鼠进行了实验。每周收集小鼠的空腹血液和骨骼样本,用于测量代谢参数和骨骼形态。扫描电子显微镜(SEM)显示了骨骼的二维精细形态,这表明骨骼纳米/微观和器官的宏观成分之间存在着强大的功能性相互联系。长枝状的管道结构看起来像神经细胞。对骨细胞腔-管系统的形态学和定量测量显示,该系统内的正负关系或代谢物参数具有广谱空间分辨率,证实了骨细胞腔-管系统与新陈代谢之间存在密切的交叉联系。我们相信,这项研究的结果可以为骨细胞、胰岛素和脂质之间的代谢关系在骨和代谢性疾病的治疗中的潜在作用提供一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in protein chemistry and structural biology
Advances in protein chemistry and structural biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
7.40
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Published continuously since 1944, The Advances in Protein Chemistry and Structural Biology series has been the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics.
期刊最新文献
In silico network pharmacology study on Glycyrrhiza glabra: Analyzing the immune-boosting phytochemical properties of Siddha medicinal plant against COVID-19. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. Analysis of endoglucanases production using metatranscriptomics and proteomics approach. Application of functional proteomics in understanding RNA virus-mediated infection. Functional proteomics based on protein microarray technology for biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1