Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2024-07-27 DOI:10.1186/s12934-024-02486-y
Joanna Honselmann Genannt Humme, Kamila Dubrowska, Bartłomiej Grygorcewicz, Marta Gliźniewicz, Oliwia Paszkiewicz, Anna Głowacka, Daniel Musik, Grzegorz Story, Rafał Rakoczy, Adrian Augustyniak
{"title":"Optimised stress - intensification of pyocyanin production with zinc oxide nanoparticles.","authors":"Joanna Honselmann Genannt Humme, Kamila Dubrowska, Bartłomiej Grygorcewicz, Marta Gliźniewicz, Oliwia Paszkiewicz, Anna Głowacka, Daniel Musik, Grzegorz Story, Rafał Rakoczy, Adrian Augustyniak","doi":"10.1186/s12934-024-02486-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles.</p><p><strong>Results: </strong>The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass.</p><p><strong>Conclusions: </strong>Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11282796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02486-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pyocyanin is a blue pigment produced by Pseudomonas aeruginosa. Due to its unique redox properties over the last decade, it has gained more and more interest as a utile chemical. Nevertheless, it remains a rather costly reagent. It was previously shown that the production of pyocyanin can be enhanced by employing various methods. Among them are using statistical methods for planning the experiments or exposing bacterial cultures to stressors such as nanoparticles dosed in sublethal concentrations, e.g. zinc oxide nanoparticles.

Results: The Design of Experiment (DoE) methodology allowed for calculating the optimal process temperature and nanoparticle concentration to intensify pyocyanin production. Low concentrations of the nanoparticles (6.06 µg/mL) and a temperature of 32℃ enhanced pyocyanin production, whereas higher concentrations of nanoparticles (275.75 µg/mL) and higher temperature stimulated biomass production and caused the abolishment of pyocyanin production. Elevated pigment production in zinc oxide nanoparticles-supplemented media was sustained in the scaled-up culture. Conducted analyses confirmed that observed stimulation of pyocyanin production is followed by higher membrane potential, altered gene expression, generation of reactive oxygen species, and accumulation of zinc in the cell's biomass.

Conclusions: Pyocyanin production can be steered using ZnO nanoparticles. Elevated production of pyocyanin due to exposure to nanoparticles is followed by the number of changes in physiology of bacteria and is a result of the cellular stress. We showed that the stress response of bacteria can be optimised using statistical methods and result in producing the desired metabolite more effectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化压力--利用纳米氧化锌颗粒强化焦花青素的生产。
背景:焦花青素是铜绿假单胞菌产生的一种蓝色色素。由于其独特的氧化还原特性,在过去十年中,它作为一种有用的化学物质受到越来越多的关注。然而,它仍然是一种相当昂贵的试剂。以前的研究表明,可以通过各种方法提高焦花青素的产量。其中包括使用统计方法规划实验,或将细菌培养物暴露于应激源,如亚致死浓度的纳米颗粒,如氧化锌纳米颗粒:实验设计(DoE)方法可以计算出最佳工艺温度和纳米粒子浓度,以提高焦花青素的产量。低浓度的纳米颗粒(6.06 微克/毫升)和 32℃的温度提高了焦花青素的产生,而较高浓度的纳米颗粒(275.75 微克/毫升)和较高的温度则刺激了生物量的产生,并导致焦花青素的产生消失。在添加氧化锌纳米颗粒的培养基中,色素产量的提高在放大培养中得以持续。分析证实,在观察到刺激产生焦花青素之后,膜电位升高、基因表达改变、活性氧生成以及锌在细胞生物量中积累:结论:焦花青素的产生可由氧化锌纳米颗粒引导。暴露于纳米颗粒导致的焦花青素生成增加,随之而来的是细菌生理上的一系列变化,是细胞应激的结果。我们的研究表明,细菌的应激反应可通过统计方法进行优化,从而更有效地产生所需的代谢物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
De novo biosynthesis of β-Arbutin in Komagataella phaffii based on metabolic engineering strategies. The influence of growth rate-controlling feeding strategy on the surfactin production in Bacillus subtilis bioreactor processes. Novel nanoconjugates of metal oxides and natural red pigment from the endophyte Monascus ruber using solid-state fermentation. Continuous production of chitooligosaccharides in a column reactor by the PUF-immobilized whole cell enzymes of Mucor circinelloides IBT-83. Correction: Enhancement of vitamin B6 production driven by omics analysis combined with fermentation optimization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1