Development of an efficient expression system for human chaperone BiP in Pichia pastoris: production optimization and functional validation.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2025-03-18 DOI:10.1186/s12934-025-02679-z
Eimantas Žitkus, Evaldas Čiplys, Mantas Žiaunys, Andrius Sakalauskas, Rimantas Slibinskas
{"title":"Development of an efficient expression system for human chaperone BiP in Pichia pastoris: production optimization and functional validation.","authors":"Eimantas Žitkus, Evaldas Čiplys, Mantas Žiaunys, Andrius Sakalauskas, Rimantas Slibinskas","doi":"10.1186/s12934-025-02679-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Human BiP, or GRP78, is a molecular chaperone mainly found in the endoplasmic reticulum (ER). However, a growing amount of data also associates BiP with many distinct functions in subcellular locations outside the ER. Notably, several diseases have been BiP-related, so the protein could potentially be used for therapeutic purposes. This study aimed to optimize a high cell-density fermentation process for the production of recombinant human BiP (rhBiP) in yeast Pichia pastoris in a mineral medium.</p><p><strong>Results: </strong>P. pastoris cells successfully synthesized and secreted full-length rhBiP protein in a complex growth medium. However, secreted rhBiP titer was considerably lower when P. pastoris was cultivated in a defined mineral basal salt medium (BSM). During rhBiP synthesis optimization in shake flasks, it was found that the addition of reducing compounds (DTT or TCEP) to mineral BSM medium is essential for high-yield rhBiP production. Furthermore, rhBiP secretion in the BSM medium was significantly increased by feeding yeast with an additional carbon source. The addition of 2 mM DTT and 0.5-1.0% of glucose/glycerol to the BSM medium increased rhBiP titer ~ 8 times in the shake flasks. Glucose/methanol mixture feeding with added 2 mM DTT before induction was applied in high-density P. pastoris fermentation in bioreactor. Oxygen-limited fermentation strategy allowed to achieve ~ 70 mg/L rhBiP in BSM medium. Hydrophobic interaction and anion exchange chromatography were used for rhBiP protein purification. Approximately 45 mg rhBiP was purified from 1 L growth medium, and according to SDS-PAGE, ~ 90% purity was reached. According to data presented in this study, rhBiP protein derived from P. pastoris is a full-length polypeptide that has ATPase activity. In addition, we show that P. pastoris-derived rhBiP effectively inhibits neurodegenerative disease-related amyloid beta 1-42 (Aβ<sub>42</sub>) peptide and alpha-synuclein (α-Syn) protein aggregation in vitro.</p><p><strong>Conclusions: </strong>A scalable bioprocess to produce rhBiP in P. pastoris was developed, providing a high yield of biologically active protein in a chemically defined mineral medium. It opens a source of rhBiP to accelerate further therapeutic applications of this important protein.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"66"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02679-z","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Human BiP, or GRP78, is a molecular chaperone mainly found in the endoplasmic reticulum (ER). However, a growing amount of data also associates BiP with many distinct functions in subcellular locations outside the ER. Notably, several diseases have been BiP-related, so the protein could potentially be used for therapeutic purposes. This study aimed to optimize a high cell-density fermentation process for the production of recombinant human BiP (rhBiP) in yeast Pichia pastoris in a mineral medium.

Results: P. pastoris cells successfully synthesized and secreted full-length rhBiP protein in a complex growth medium. However, secreted rhBiP titer was considerably lower when P. pastoris was cultivated in a defined mineral basal salt medium (BSM). During rhBiP synthesis optimization in shake flasks, it was found that the addition of reducing compounds (DTT or TCEP) to mineral BSM medium is essential for high-yield rhBiP production. Furthermore, rhBiP secretion in the BSM medium was significantly increased by feeding yeast with an additional carbon source. The addition of 2 mM DTT and 0.5-1.0% of glucose/glycerol to the BSM medium increased rhBiP titer ~ 8 times in the shake flasks. Glucose/methanol mixture feeding with added 2 mM DTT before induction was applied in high-density P. pastoris fermentation in bioreactor. Oxygen-limited fermentation strategy allowed to achieve ~ 70 mg/L rhBiP in BSM medium. Hydrophobic interaction and anion exchange chromatography were used for rhBiP protein purification. Approximately 45 mg rhBiP was purified from 1 L growth medium, and according to SDS-PAGE, ~ 90% purity was reached. According to data presented in this study, rhBiP protein derived from P. pastoris is a full-length polypeptide that has ATPase activity. In addition, we show that P. pastoris-derived rhBiP effectively inhibits neurodegenerative disease-related amyloid beta 1-42 (Aβ42) peptide and alpha-synuclein (α-Syn) protein aggregation in vitro.

Conclusions: A scalable bioprocess to produce rhBiP in P. pastoris was developed, providing a high yield of biologically active protein in a chemically defined mineral medium. It opens a source of rhBiP to accelerate further therapeutic applications of this important protein.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
Bacterial biosynthesis of abietane-type diterpene ferruginol from glucose. Gluconobacter oxydans DSM 50049 - an efficient biocatalyst for oxidation of 5-formyl-2-furancarboxylic acid (FFCA) to 2,5-furandicarboxylic acid (FDCA). Development of an efficient expression system for human chaperone BiP in Pichia pastoris: production optimization and functional validation. Acetol biosynthesis enables NADPH balance during nitrogen limitation in engineered Escherichia coli. The comparison of gut microbiota between different types of epilepsy in children.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1