Single-cell omics: experimental workflow, data analyses and applications.

IF 8 2区 生物学 Q1 BIOLOGY Science China Life Sciences Pub Date : 2025-01-01 Epub Date: 2024-07-23 DOI:10.1007/s11427-023-2561-0
Fengying Sun, Haoyan Li, Dongqing Sun, Shaliu Fu, Lei Gu, Xin Shao, Qinqin Wang, Xin Dong, Bin Duan, Feiyang Xing, Jun Wu, Minmin Xiao, Fangqing Zhao, Jing-Dong J Han, Qi Liu, Xiaohui Fan, Chen Li, Chenfei Wang, Tieliu Shi
{"title":"Single-cell omics: experimental workflow, data analyses and applications.","authors":"Fengying Sun, Haoyan Li, Dongqing Sun, Shaliu Fu, Lei Gu, Xin Shao, Qinqin Wang, Xin Dong, Bin Duan, Feiyang Xing, Jun Wu, Minmin Xiao, Fangqing Zhao, Jing-Dong J Han, Qi Liu, Xiaohui Fan, Chen Li, Chenfei Wang, Tieliu Shi","doi":"10.1007/s11427-023-2561-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":"5-102"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-023-2561-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cells are the fundamental units of biological systems and exhibit unique development trajectories and molecular features. Our exploration of how the genomes orchestrate the formation and maintenance of each cell, and control the cellular phenotypes of various organismsis, is both captivating and intricate. Since the inception of the first single-cell RNA technology, technologies related to single-cell sequencing have experienced rapid advancements in recent years. These technologies have expanded horizontally to include single-cell genome, epigenome, proteome, and metabolome, while vertically, they have progressed to integrate multiple omics data and incorporate additional information such as spatial scRNA-seq and CRISPR screening. Single-cell omics represent a groundbreaking advancement in the biomedical field, offering profound insights into the understanding of complex diseases, including cancers. Here, we comprehensively summarize recent advances in single-cell omics technologies, with a specific focus on the methodology section. This overview aims to guide researchers in selecting appropriate methods for single-cell sequencing and related data analysis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单细胞组学:实验工作流程、数据分析和应用。
细胞是生物系统的基本单位,具有独特的发育轨迹和分子特征。我们对基因组如何协调每个细胞的形成和维持,以及如何控制各种生物的细胞表型的探索既令人着迷,又错综复杂。自第一项单细胞 RNA 技术诞生以来,与单细胞测序相关的技术近年来取得了突飞猛进的发展。这些技术在横向上扩展到单细胞基因组、表观基因组、蛋白质组和代谢组,在纵向上发展到整合多种全微粒数据并纳入空间 scRNA-seq 和 CRISPR 筛选等附加信息。单细胞全息研究代表了生物医学领域的突破性进展,为了解包括癌症在内的复杂疾病提供了深刻的见解。在此,我们全面总结了单细胞全局组学技术的最新进展,并特别关注方法论部分。本综述旨在指导研究人员选择合适的单细胞测序和相关数据分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.10
自引率
8.80%
发文量
2907
审稿时长
3.2 months
期刊介绍: Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.
期刊最新文献
Peficitinib suppresses diffuse-type tenosynovial giant cell tumor by targeting TYK2 and JAK/STAT signaling. Epigenetics in the modern era of crop improvements. FSD1 inhibits glioblastoma diffuse infiltration through restriction of HDAC6-mediated microtubule deacetylation. Approach from the laboratory to the field: New strategies in the control of mosquito-borne infectious diseases. Single-cell omics: experimental workflow, data analyses and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1