3D Hole Filling using Deep Learning Inpainting

Marina Hernández-Bautista, F. J. Melero
{"title":"3D Hole Filling using Deep Learning Inpainting","authors":"Marina Hernández-Bautista, F. J. Melero","doi":"arxiv-2407.17896","DOIUrl":null,"url":null,"abstract":"The current work presents a novel methodology for completing 3D surfaces\nproduced from 3D digitization technologies in places where there is a scarcity\nof meaningful geometric data. Incomplete or missing data in these\nthree-dimensional (3D) models can lead to erroneous or flawed renderings,\nlimiting their usefulness in a variety of applications such as visualization,\ngeometric computation, and 3D printing. Conventional surface estimation\napproaches often produce implausible results, especially when dealing with\ncomplex surfaces. To address this issue, we propose a technique that\nincorporates neural network-based 2D inpainting to effectively reconstruct 3D\nsurfaces. Our customized neural networks were trained on a dataset containing\nover 1 million curvature images. These images show the curvature of vertices as\nplanar representations in 2D. Furthermore, we used a coarse-to-fine surface\ndeformation technique to improve the accuracy of the reconstructed pictures and\nassure surface adaptability. This strategy enables the system to learn and\ngeneralize patterns from input data, resulting in the development of precise\nand comprehensive three-dimensional surfaces. Our methodology excels in the\nshape completion process, effectively filling complex holes in\nthree-dimensional surfaces with a remarkable level of realism and precision.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current work presents a novel methodology for completing 3D surfaces produced from 3D digitization technologies in places where there is a scarcity of meaningful geometric data. Incomplete or missing data in these three-dimensional (3D) models can lead to erroneous or flawed renderings, limiting their usefulness in a variety of applications such as visualization, geometric computation, and 3D printing. Conventional surface estimation approaches often produce implausible results, especially when dealing with complex surfaces. To address this issue, we propose a technique that incorporates neural network-based 2D inpainting to effectively reconstruct 3D surfaces. Our customized neural networks were trained on a dataset containing over 1 million curvature images. These images show the curvature of vertices as planar representations in 2D. Furthermore, we used a coarse-to-fine surface deformation technique to improve the accuracy of the reconstructed pictures and assure surface adaptability. This strategy enables the system to learn and generalize patterns from input data, resulting in the development of precise and comprehensive three-dimensional surfaces. Our methodology excels in the shape completion process, effectively filling complex holes in three-dimensional surfaces with a remarkable level of realism and precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习绘制 3D 填充孔洞
目前的研究提出了一种新颖的方法,用于在缺乏有意义几何数据的地方完成三维数字化技术生成的三维表面。三维(3D)模型中不完整或缺失的数据会导致错误或有缺陷的渲染,从而限制了它们在可视化、几何计算和 3D 打印等各种应用中的实用性。传统的曲面估算方法往往会产生难以置信的结果,尤其是在处理复杂曲面时。为了解决这个问题,我们提出了一种结合基于神经网络的二维内绘技术,以有效地重建三维表面。我们定制的神经网络是在包含 100 多万张曲率图像的数据集上训练的。这些图像将顶点的曲率显示为二维平面表示。此外,我们还使用了从粗到细的曲面变形技术,以提高重建图片的准确性,并确保曲面的适应性。这种策略使系统能够从输入数据中学习和归纳模式,从而开发出精确而全面的三维曲面。我们的方法在形状完成过程中表现出色,能有效地填补三维表面的复杂孔洞,逼真度和精确度都达到了非凡的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1