Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models

Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks Kamko, Linmiao Xu, Shivam Shrirao, Joao Souza, Suhail Doshi, Daiqing Li
{"title":"Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models","authors":"Bingchen Liu, Ehsan Akhgari, Alexander Visheratin, Aleks Kamko, Linmiao Xu, Shivam Shrirao, Joao Souza, Suhail Doshi, Daiqing Li","doi":"arxiv-2409.10695","DOIUrl":null,"url":null,"abstract":"We introduce Playground v3 (PGv3), our latest text-to-image model that\nachieves state-of-the-art (SoTA) performance across multiple testing\nbenchmarks, excels in graphic design abilities and introduces new capabilities.\nUnlike traditional text-to-image generative models that rely on pre-trained\nlanguage models like T5 or CLIP text encoders, our approach fully integrates\nLarge Language Models (LLMs) with a novel structure that leverages text\nconditions exclusively from a decoder-only LLM. Additionally, to enhance image\ncaptioning quality-we developed an in-house captioner, capable of generating\ncaptions with varying levels of detail, enriching the diversity of text\nstructures. We also introduce a new benchmark CapsBench to evaluate detailed\nimage captioning performance. Experimental results demonstrate that PGv3 excels\nin text prompt adherence, complex reasoning, and accurate text rendering. User\npreference studies indicate the super-human graphic design ability of our model\nfor common design applications, such as stickers, posters, and logo designs.\nFurthermore, PGv3 introduces new capabilities, including precise RGB color\ncontrol and robust multilingual understanding.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce Playground v3 (PGv3), our latest text-to-image model that achieves state-of-the-art (SoTA) performance across multiple testing benchmarks, excels in graphic design abilities and introduces new capabilities. Unlike traditional text-to-image generative models that rely on pre-trained language models like T5 or CLIP text encoders, our approach fully integrates Large Language Models (LLMs) with a novel structure that leverages text conditions exclusively from a decoder-only LLM. Additionally, to enhance image captioning quality-we developed an in-house captioner, capable of generating captions with varying levels of detail, enriching the diversity of text structures. We also introduce a new benchmark CapsBench to evaluate detailed image captioning performance. Experimental results demonstrate that PGv3 excels in text prompt adherence, complex reasoning, and accurate text rendering. User preference studies indicate the super-human graphic design ability of our model for common design applications, such as stickers, posters, and logo designs. Furthermore, PGv3 introduces new capabilities, including precise RGB color control and robust multilingual understanding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Playground v3:利用深度融合大型语言模型改进文本到图像的对齐方式
与依赖 T5 或 CLIP 文本编码器等预训练语言模型的传统文本到图像生成模型不同,我们的方法完全集成了大型语言模型 (LLM),并采用了一种新颖的结构,完全利用解码器专用 LLM 中的文本条件。此外,为了提高图像字幕质量,我们开发了一款内部字幕机,能够生成不同详细程度的字幕,丰富了文本结构的多样性。我们还引入了一个新的基准 CapsBench 来评估详细图像字幕的性能。实验结果表明,PGv3 在文本提示、复杂推理和准确文本渲染方面表现出色。此外,PGv3 还引入了新功能,包括精确的 RGB 颜色控制和强大的多语言理解能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1