{"title":"The hawkmoth proboscis: an insect model for sensorimotor control of reaching and exploration","authors":"Anna Stöckl, Tanvi Deora","doi":"10.1093/icb/icae123","DOIUrl":null,"url":null,"abstract":"Reaching and inspecting objects is an intricate part of human life, which is shared by a diversity of animals across phyla. In addition to appendages like legs and antennae, some insects use their mouthparts to reach and inspect targets. Hawkmoths of the family Sphingidae (Lepidoptera) use their extremely long and straw-like proboscis to drink nectar from flowers. As they approach flowers, hawkmoths uncoil their proboscis and explore the floral surface while hovering to target the proboscis to the nectary hole. Several sensory modalities provide feedback to control and guide these extremely versatile proboscis movements. The control task faced by the hawkmoths’ nervous system during such behaviors in not unlike that of an animal guiding limbs or a robotic agent guiding a manipulator to a target. Hawkmoths perform these reaching maneuvers while simultaneously hovering, and hence require rapid and continuous coordination between the proboscis, neck and and flight motor systems, thereby providing a unique invertebrate model for studying appendage guidance and reaching. Here, we review what is known about how hawkmoths use their proboscis for floral inspection and nectar discovery, as well as the role of various sensors in proboscis guidance. We give a brief overview of the morphology and muscular apparatus of the hawkmoth proboscis, and discuss how multimodal sensory feedback might be turned into motor action for appendage guidance.","PeriodicalId":54971,"journal":{"name":"Integrative and Comparative Biology","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative and Comparative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/icb/icae123","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reaching and inspecting objects is an intricate part of human life, which is shared by a diversity of animals across phyla. In addition to appendages like legs and antennae, some insects use their mouthparts to reach and inspect targets. Hawkmoths of the family Sphingidae (Lepidoptera) use their extremely long and straw-like proboscis to drink nectar from flowers. As they approach flowers, hawkmoths uncoil their proboscis and explore the floral surface while hovering to target the proboscis to the nectary hole. Several sensory modalities provide feedback to control and guide these extremely versatile proboscis movements. The control task faced by the hawkmoths’ nervous system during such behaviors in not unlike that of an animal guiding limbs or a robotic agent guiding a manipulator to a target. Hawkmoths perform these reaching maneuvers while simultaneously hovering, and hence require rapid and continuous coordination between the proboscis, neck and and flight motor systems, thereby providing a unique invertebrate model for studying appendage guidance and reaching. Here, we review what is known about how hawkmoths use their proboscis for floral inspection and nectar discovery, as well as the role of various sensors in proboscis guidance. We give a brief overview of the morphology and muscular apparatus of the hawkmoth proboscis, and discuss how multimodal sensory feedback might be turned into motor action for appendage guidance.
期刊介绍:
Integrative and Comparative Biology ( ICB ), formerly American Zoologist , is one of the most highly respected and cited journals in the field of biology. The journal''s primary focus is to integrate the varying disciplines in this broad field, while maintaining the highest scientific quality. ICB''s peer-reviewed symposia provide first class syntheses of the top research in a field. ICB also publishes book reviews, reports, and special bulletins.