Hydrogel stiffness mediates the PI3K-AKT signaling of mouse bone marrow stromal cells through cellular traction force

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Colloid and Interface Science Communications Pub Date : 2024-07-26 DOI:10.1016/j.colcom.2024.100797
Man Zhang , Xiangyu Dong , Qiang Wei , Yuanxin Ye , Hui Zhou
{"title":"Hydrogel stiffness mediates the PI3K-AKT signaling of mouse bone marrow stromal cells through cellular traction force","authors":"Man Zhang ,&nbsp;Xiangyu Dong ,&nbsp;Qiang Wei ,&nbsp;Yuanxin Ye ,&nbsp;Hui Zhou","doi":"10.1016/j.colcom.2024.100797","DOIUrl":null,"url":null,"abstract":"<div><p>Adhesive interface stiffness significantly influences physiological processes by altering cell behaviors and signaling pathways. In particular, phosphoinositide 3-kinase (PI3K)-AKT pathway, one of the most important pathways that cell division, survival, and differentiation, can be affected. However, the detailed mechanism of this interaction remains unclear. In this study, we used gelatin methacrylate (GelMA) hydrogels with varying stiffness to mimic cellular mechanical environments and examine their effects on PI3K-AKT signaling. Cells cultured on stiff hydrogels showed increased spreading, focal adhesion formation, and contractility compared to those on softer hydrogels. Furthermore, mechanotransduction activation on stiff hydrogels upregulated PIP3, PI3K, and phosphorylated AKT (pAKT) expression. Notably, inhibiting myosin II, a key regulator of contractility, reduced PI3K-AKT signaling, suggesting a link between force generation and pathway activation. These findings reveal that how PI3K-AKT signaling can be mediated by cell adhesion interface stiffness through cell contractility, which provides new insights for developing therapies targeting PI3K-AKT-associated diseases.</p></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"62 ","pages":"Article 100797"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2215038224000323/pdfft?md5=ada0d6b4bc6f23bf7ca73a46866647a9&pid=1-s2.0-S2215038224000323-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038224000323","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adhesive interface stiffness significantly influences physiological processes by altering cell behaviors and signaling pathways. In particular, phosphoinositide 3-kinase (PI3K)-AKT pathway, one of the most important pathways that cell division, survival, and differentiation, can be affected. However, the detailed mechanism of this interaction remains unclear. In this study, we used gelatin methacrylate (GelMA) hydrogels with varying stiffness to mimic cellular mechanical environments and examine their effects on PI3K-AKT signaling. Cells cultured on stiff hydrogels showed increased spreading, focal adhesion formation, and contractility compared to those on softer hydrogels. Furthermore, mechanotransduction activation on stiff hydrogels upregulated PIP3, PI3K, and phosphorylated AKT (pAKT) expression. Notably, inhibiting myosin II, a key regulator of contractility, reduced PI3K-AKT signaling, suggesting a link between force generation and pathway activation. These findings reveal that how PI3K-AKT signaling can be mediated by cell adhesion interface stiffness through cell contractility, which provides new insights for developing therapies targeting PI3K-AKT-associated diseases.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水凝胶硬度通过细胞牵引力介导小鼠骨髓基质细胞的 PI3K-AKT 信号转导
粘合界面硬度通过改变细胞行为和信号传导途径对生理过程产生重大影响。尤其是磷脂肌醇3-激酶(PI3K)-AKT通路,它是细胞分裂、存活和分化的最重要通路之一,会受到影响。然而,这种相互作用的详细机制仍不清楚。在这项研究中,我们使用不同硬度的甲基丙烯酸明胶(GelMA)水凝胶来模拟细胞机械环境,并研究它们对 PI3K-AKT 信号传导的影响。与在较软水凝胶上培养的细胞相比,在较硬水凝胶上培养的细胞显示出更强的扩散、病灶粘附形成和收缩能力。此外,硬水凝胶上的机械传导激活上调了 PIP3、PI3K 和磷酸化 AKT(pAKT)的表达。值得注意的是,抑制肌球蛋白 II(收缩力的关键调节因子)可减少 PI3K-AKT 信号传导,这表明力的产生与通路激活之间存在联系。这些发现揭示了PI3K-AKT信号如何通过细胞收缩性介导细胞粘附界面硬度,为开发针对PI3K-AKT相关疾病的疗法提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
期刊最新文献
Adhesion mechanisms and design strategies for bioadhesives Spongosome-based co-delivery of curcumin and Piperine: A novel strategy for mitigating pollution-induced skin damage Icariin-loaded multilayered films deposited onto micro/nanostructured titanium enhances osteogenesis and reduces inflammation under diabetic conditions From dairy waste to value-added bio-based surfactants Colloidal photonic crystals with tunable reflection wavelengths or intensities derived from their reconfigurable structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1