Insect cuticle: A source of inspiration for biomimetic Interface material design

IF 4.7 3区 材料科学 Q2 CHEMISTRY, PHYSICAL Colloid and Interface Science Communications Pub Date : 2025-01-01 DOI:10.1016/j.colcom.2025.100818
Yang Zheng , Junwen Wang , Jianwen Wang , Yulong Li , Zhenqi Jiang
{"title":"Insect cuticle: A source of inspiration for biomimetic Interface material design","authors":"Yang Zheng ,&nbsp;Junwen Wang ,&nbsp;Jianwen Wang ,&nbsp;Yulong Li ,&nbsp;Zhenqi Jiang","doi":"10.1016/j.colcom.2025.100818","DOIUrl":null,"url":null,"abstract":"<div><div>Insects represent one of the most ancient and diverse groups of organisms. Over 400 million years of evolution, their cuticles have evolved into highly optimized natural biomaterials that achieve a unique balance of lightweight structure, high strength, and elasticity. The remarkable properties of insect cuticles have inspired the development of biomimetic materials. In this review, we explore the structural organization, material properties, and key molecular components of insect cuticles, emphasizing their potential applications in both structural and molecular bionics. Special attention is given to areas such as protective coating, tissue engineering, and other biomaterials that demand exceptional elasticity or durability. Finally, we highlight future research directions on the molecular assembly mechanisms of insect cuticles, aiming to advance the design of high-performance, sustainable materials.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"64 ","pages":"Article 100818"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000020","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Insects represent one of the most ancient and diverse groups of organisms. Over 400 million years of evolution, their cuticles have evolved into highly optimized natural biomaterials that achieve a unique balance of lightweight structure, high strength, and elasticity. The remarkable properties of insect cuticles have inspired the development of biomimetic materials. In this review, we explore the structural organization, material properties, and key molecular components of insect cuticles, emphasizing their potential applications in both structural and molecular bionics. Special attention is given to areas such as protective coating, tissue engineering, and other biomaterials that demand exceptional elasticity or durability. Finally, we highlight future research directions on the molecular assembly mechanisms of insect cuticles, aiming to advance the design of high-performance, sustainable materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Interface Science Communications
Colloid and Interface Science Communications Materials Science-Materials Chemistry
CiteScore
9.40
自引率
6.70%
发文量
125
审稿时长
43 days
期刊介绍: Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.
期刊最新文献
Loaded endogenous CO mimetic nanomedicine mitigates ischemic stroke ischemia-reperfusion injury Facilely discrimination of 10 psychoactive substances by poly(ionic liquid) photonic sphere platform Insect cuticle: A source of inspiration for biomimetic Interface material design Construction of superficial pyrrolidone-rich polymer nanoparticles as integrated sustainable materials for iodine adsorption and bacteria eradication Use of nanoparticle concentration and magnetic fields to control the structures of superparamagnetic Fe3O4 nanoparticle Langmuir films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1