Physical limits on galvanotaxis depends on cell morphology and orientation

Ifunanya Nwogbaga, Brian A. Camley
{"title":"Physical limits on galvanotaxis depends on cell morphology and orientation","authors":"Ifunanya Nwogbaga, Brian A. Camley","doi":"arxiv-2407.17420","DOIUrl":null,"url":null,"abstract":"Galvanotaxis is believed to be driven by the redistribution of transmembrane\nproteins and other molecules, referred to as \"sensors\", through electrophoresis\nand electroosmosis. Here, we update our previous model of the limits of\ngalvanotaxis due to stochasticity of sensor movements to account for cell shape\nand orientation. Computing the Fisher information, we find that cells in\nprinciple possess more information about the electric field direction when\ntheir long axis is parallel to the field, but that for weak fields\nmaximum-likelihood estimators of the field direction may actually have lower\nvariability when the cell's long axis is perpendicular to the field. In an\nalternate possibility, we find that if cells instead estimate the field\ndirection by taking the average of all the sensor locations as its directional\ncue (\"vector sum\"), this introduces a bias towards the short axis, an effect\nnot present for isotropic cells. We also explore the possibility that cell\nelongation arises downstream of sensor redistribution. We argue that if sensors\nmigrate to the cell's rear, the cell will expand perpendicular the field - as\nis more commonly observed - but if sensors migrate to the front, the cell will\nelongate parallel to the field.","PeriodicalId":501321,"journal":{"name":"arXiv - QuanBio - Cell Behavior","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Cell Behavior","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Galvanotaxis is believed to be driven by the redistribution of transmembrane proteins and other molecules, referred to as "sensors", through electrophoresis and electroosmosis. Here, we update our previous model of the limits of galvanotaxis due to stochasticity of sensor movements to account for cell shape and orientation. Computing the Fisher information, we find that cells in principle possess more information about the electric field direction when their long axis is parallel to the field, but that for weak fields maximum-likelihood estimators of the field direction may actually have lower variability when the cell's long axis is perpendicular to the field. In an alternate possibility, we find that if cells instead estimate the field direction by taking the average of all the sensor locations as its directional cue ("vector sum"), this introduces a bias towards the short axis, an effect not present for isotropic cells. We also explore the possibility that cell elongation arises downstream of sensor redistribution. We argue that if sensors migrate to the cell's rear, the cell will expand perpendicular the field - as is more commonly observed - but if sensors migrate to the front, the cell will elongate parallel to the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电泳的物理限制取决于细胞形态和方向
据信,通过电泳和电渗作用,跨膜蛋白和其他分子(被称为 "传感器")会重新分布,从而驱动加尔文轴向运动。在此,我们更新了之前的模型,即由于传感器运动的随机性而导致的galvanotaxis极限,以考虑细胞的形状和方向。通过计算费雪信息,我们发现当细胞长轴平行于电场时,细胞原则上拥有更多关于电场方向的信息,但对于弱电场,当细胞长轴垂直于电场时,电场方向的最大似然估计值实际上可能具有较低的变异性。在另一种可能的情况下,我们发现如果细胞将所有传感器位置的平均值作为其方向线索("矢量和")来估计场方向,就会产生偏向短轴的偏差,而各向同性细胞则不存在这种效应。我们还探讨了细胞长度在传感器重新分布下游产生的可能性。我们认为,如果传感器迁移到细胞的后部,细胞将垂直于场扩展--这是更常见的现象;但如果传感器迁移到前部,细胞将平行于场伸长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients Geometric Effects in Large Scale Intracellular Flows Motion Ordering in Cellular Polar-polar and Polar-nonpolar Interactions Modelling how lamellipodia-driven cells maintain persistent migration and interact with external barriers Synchronized Memory-Dependent Intracellular Oscillations for a Cell-Bulk ODE-PDE Model in $\mathbb{R}^2$
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1